On the miscibility of cardiolipin with 1,2-diacyl phosphoglycerides: Binary mixtures of dimyristoylphosphatidylethanolamine and tetramyristoylcardiolipin
- Autores
- Frías, María de los Ángeles; Benesch, Matthew G. K.; Lewis, Ruthven N. A. H.; McElhaney, Ronald N.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The thermotropic phase behavior and organization of model membranes composed of binary mixtures of the quadruple-chained, anionic phospholipid tetramyristoylcardiolipin (TMCL) with the double-chained zwitterionic phospholipid dimyristoylphosphatidylethanolamine (DMPE) were examined by a combination of differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy. After equilibration at low temperature, DSC thermograms exhibited by binary mixtures of TMCL and DMPE containing < 80 mol DMPE exhibit a fairly energetic lower temperature endotherm and a highly energetic higher temperature endotherm. As the relative amount of TMCL in the mixture decreases, the temperature, enthalpy and cooperativity of the lower temperature endotherm also decreases and is not calorimetrically detectable when the TMCL content falls below 20 mol%. In contrast, the temperature of the higher temperature endotherm increases as the proportion of TMCL decreases, but the enthalpy and cooperativity both decrease and the transition endotherms become multimodal. The FTIR spectroscopic results indicate that the lower temperature endotherm corresponds to a lamellar crystalline (Lc) to lamellar gel (Lβ) phase transition and that the higher temperature transition involves the conversion of the Lβ phase to the lamellar liquid-crystalline (Lα) phase. Moreover, the FTIR spectroscopic signatures observed at temperatures below the onset of the Lc/Lβ phase transitions are consistent with the coexistence of structures akin to a TMCL-like Lc phase and the L β phase, and with the relative amount of the TMCL-like L c phase increasing progressively as the TMCL content of the mixture increases. These latter observations suggest that the TMCL and DMPE components of these mixtures are poorly miscible at temperatures below the L β/Lα phase transition temperature. Poor miscibility of these two components is also suggested by the complexity of the DSC thermograms observed at the Lβ/Lα phase transitions of these mixtures and with the complex relationship between their Lβ/Lα phase transition temperatures and the composition of the mixture. Overall, our data suggests that TMCL and DMPE may be intrinsically poorly miscible across a broad composition range, notwithstanding the homogeneity of the fatty acid chains of the two components and the modest (~ 10 °C) difference between their Lβ/Lα phase transition temperatures.
Fil: Frías, María de los Ángeles. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Benesch, Matthew G. K.. University of Alberta; Canadá
Fil: Lewis, Ruthven N. A. H.. University of Alberta; Canadá
Fil: McElhaney, Ronald N.. University of Alberta; Canadá - Materia
-
thermotropic phase behavior
binary mixtures
endotherm
homogeneity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/192062
Ver los metadatos del registro completo
id |
CONICETDig_999952557f03d4fbee7f3dd703832e5d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/192062 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the miscibility of cardiolipin with 1,2-diacyl phosphoglycerides: Binary mixtures of dimyristoylphosphatidylethanolamine and tetramyristoylcardiolipinFrías, María de los ÁngelesBenesch, Matthew G. K.Lewis, Ruthven N. A. H.McElhaney, Ronald N.thermotropic phase behaviorbinary mixturesendothermhomogeneityhttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1The thermotropic phase behavior and organization of model membranes composed of binary mixtures of the quadruple-chained, anionic phospholipid tetramyristoylcardiolipin (TMCL) with the double-chained zwitterionic phospholipid dimyristoylphosphatidylethanolamine (DMPE) were examined by a combination of differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy. After equilibration at low temperature, DSC thermograms exhibited by binary mixtures of TMCL and DMPE containing < 80 mol DMPE exhibit a fairly energetic lower temperature endotherm and a highly energetic higher temperature endotherm. As the relative amount of TMCL in the mixture decreases, the temperature, enthalpy and cooperativity of the lower temperature endotherm also decreases and is not calorimetrically detectable when the TMCL content falls below 20 mol%. In contrast, the temperature of the higher temperature endotherm increases as the proportion of TMCL decreases, but the enthalpy and cooperativity both decrease and the transition endotherms become multimodal. The FTIR spectroscopic results indicate that the lower temperature endotherm corresponds to a lamellar crystalline (Lc) to lamellar gel (Lβ) phase transition and that the higher temperature transition involves the conversion of the Lβ phase to the lamellar liquid-crystalline (Lα) phase. Moreover, the FTIR spectroscopic signatures observed at temperatures below the onset of the Lc/Lβ phase transitions are consistent with the coexistence of structures akin to a TMCL-like Lc phase and the L β phase, and with the relative amount of the TMCL-like L c phase increasing progressively as the TMCL content of the mixture increases. These latter observations suggest that the TMCL and DMPE components of these mixtures are poorly miscible at temperatures below the L β/Lα phase transition temperature. Poor miscibility of these two components is also suggested by the complexity of the DSC thermograms observed at the Lβ/Lα phase transitions of these mixtures and with the complex relationship between their Lβ/Lα phase transition temperatures and the composition of the mixture. Overall, our data suggests that TMCL and DMPE may be intrinsically poorly miscible across a broad composition range, notwithstanding the homogeneity of the fatty acid chains of the two components and the modest (~ 10 °C) difference between their Lβ/Lα phase transition temperatures.Fil: Frías, María de los Ángeles. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Benesch, Matthew G. K.. University of Alberta; CanadáFil: Lewis, Ruthven N. A. H.. University of Alberta; CanadáFil: McElhaney, Ronald N.. University of Alberta; CanadáElsevier Science2011-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/192062Frías, María de los Ángeles; Benesch, Matthew G. K.; Lewis, Ruthven N. A. H.; McElhaney, Ronald N.; On the miscibility of cardiolipin with 1,2-diacyl phosphoglycerides: Binary mixtures of dimyristoylphosphatidylethanolamine and tetramyristoylcardiolipin; Elsevier Science; Biochimica et Biophysica Acta - Biomembranes; 1808; 3; 3-2011; 774-7830005-2736CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0005273610004451info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bbamem.2010.12.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:52Zoai:ri.conicet.gov.ar:11336/192062instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:52.99CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the miscibility of cardiolipin with 1,2-diacyl phosphoglycerides: Binary mixtures of dimyristoylphosphatidylethanolamine and tetramyristoylcardiolipin |
title |
On the miscibility of cardiolipin with 1,2-diacyl phosphoglycerides: Binary mixtures of dimyristoylphosphatidylethanolamine and tetramyristoylcardiolipin |
spellingShingle |
On the miscibility of cardiolipin with 1,2-diacyl phosphoglycerides: Binary mixtures of dimyristoylphosphatidylethanolamine and tetramyristoylcardiolipin Frías, María de los Ángeles thermotropic phase behavior binary mixtures endotherm homogeneity |
title_short |
On the miscibility of cardiolipin with 1,2-diacyl phosphoglycerides: Binary mixtures of dimyristoylphosphatidylethanolamine and tetramyristoylcardiolipin |
title_full |
On the miscibility of cardiolipin with 1,2-diacyl phosphoglycerides: Binary mixtures of dimyristoylphosphatidylethanolamine and tetramyristoylcardiolipin |
title_fullStr |
On the miscibility of cardiolipin with 1,2-diacyl phosphoglycerides: Binary mixtures of dimyristoylphosphatidylethanolamine and tetramyristoylcardiolipin |
title_full_unstemmed |
On the miscibility of cardiolipin with 1,2-diacyl phosphoglycerides: Binary mixtures of dimyristoylphosphatidylethanolamine and tetramyristoylcardiolipin |
title_sort |
On the miscibility of cardiolipin with 1,2-diacyl phosphoglycerides: Binary mixtures of dimyristoylphosphatidylethanolamine and tetramyristoylcardiolipin |
dc.creator.none.fl_str_mv |
Frías, María de los Ángeles Benesch, Matthew G. K. Lewis, Ruthven N. A. H. McElhaney, Ronald N. |
author |
Frías, María de los Ángeles |
author_facet |
Frías, María de los Ángeles Benesch, Matthew G. K. Lewis, Ruthven N. A. H. McElhaney, Ronald N. |
author_role |
author |
author2 |
Benesch, Matthew G. K. Lewis, Ruthven N. A. H. McElhaney, Ronald N. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
thermotropic phase behavior binary mixtures endotherm homogeneity |
topic |
thermotropic phase behavior binary mixtures endotherm homogeneity |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.7 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The thermotropic phase behavior and organization of model membranes composed of binary mixtures of the quadruple-chained, anionic phospholipid tetramyristoylcardiolipin (TMCL) with the double-chained zwitterionic phospholipid dimyristoylphosphatidylethanolamine (DMPE) were examined by a combination of differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy. After equilibration at low temperature, DSC thermograms exhibited by binary mixtures of TMCL and DMPE containing < 80 mol DMPE exhibit a fairly energetic lower temperature endotherm and a highly energetic higher temperature endotherm. As the relative amount of TMCL in the mixture decreases, the temperature, enthalpy and cooperativity of the lower temperature endotherm also decreases and is not calorimetrically detectable when the TMCL content falls below 20 mol%. In contrast, the temperature of the higher temperature endotherm increases as the proportion of TMCL decreases, but the enthalpy and cooperativity both decrease and the transition endotherms become multimodal. The FTIR spectroscopic results indicate that the lower temperature endotherm corresponds to a lamellar crystalline (Lc) to lamellar gel (Lβ) phase transition and that the higher temperature transition involves the conversion of the Lβ phase to the lamellar liquid-crystalline (Lα) phase. Moreover, the FTIR spectroscopic signatures observed at temperatures below the onset of the Lc/Lβ phase transitions are consistent with the coexistence of structures akin to a TMCL-like Lc phase and the L β phase, and with the relative amount of the TMCL-like L c phase increasing progressively as the TMCL content of the mixture increases. These latter observations suggest that the TMCL and DMPE components of these mixtures are poorly miscible at temperatures below the L β/Lα phase transition temperature. Poor miscibility of these two components is also suggested by the complexity of the DSC thermograms observed at the Lβ/Lα phase transitions of these mixtures and with the complex relationship between their Lβ/Lα phase transition temperatures and the composition of the mixture. Overall, our data suggests that TMCL and DMPE may be intrinsically poorly miscible across a broad composition range, notwithstanding the homogeneity of the fatty acid chains of the two components and the modest (~ 10 °C) difference between their Lβ/Lα phase transition temperatures. Fil: Frías, María de los Ángeles. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Benesch, Matthew G. K.. University of Alberta; Canadá Fil: Lewis, Ruthven N. A. H.. University of Alberta; Canadá Fil: McElhaney, Ronald N.. University of Alberta; Canadá |
description |
The thermotropic phase behavior and organization of model membranes composed of binary mixtures of the quadruple-chained, anionic phospholipid tetramyristoylcardiolipin (TMCL) with the double-chained zwitterionic phospholipid dimyristoylphosphatidylethanolamine (DMPE) were examined by a combination of differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy. After equilibration at low temperature, DSC thermograms exhibited by binary mixtures of TMCL and DMPE containing < 80 mol DMPE exhibit a fairly energetic lower temperature endotherm and a highly energetic higher temperature endotherm. As the relative amount of TMCL in the mixture decreases, the temperature, enthalpy and cooperativity of the lower temperature endotherm also decreases and is not calorimetrically detectable when the TMCL content falls below 20 mol%. In contrast, the temperature of the higher temperature endotherm increases as the proportion of TMCL decreases, but the enthalpy and cooperativity both decrease and the transition endotherms become multimodal. The FTIR spectroscopic results indicate that the lower temperature endotherm corresponds to a lamellar crystalline (Lc) to lamellar gel (Lβ) phase transition and that the higher temperature transition involves the conversion of the Lβ phase to the lamellar liquid-crystalline (Lα) phase. Moreover, the FTIR spectroscopic signatures observed at temperatures below the onset of the Lc/Lβ phase transitions are consistent with the coexistence of structures akin to a TMCL-like Lc phase and the L β phase, and with the relative amount of the TMCL-like L c phase increasing progressively as the TMCL content of the mixture increases. These latter observations suggest that the TMCL and DMPE components of these mixtures are poorly miscible at temperatures below the L β/Lα phase transition temperature. Poor miscibility of these two components is also suggested by the complexity of the DSC thermograms observed at the Lβ/Lα phase transitions of these mixtures and with the complex relationship between their Lβ/Lα phase transition temperatures and the composition of the mixture. Overall, our data suggests that TMCL and DMPE may be intrinsically poorly miscible across a broad composition range, notwithstanding the homogeneity of the fatty acid chains of the two components and the modest (~ 10 °C) difference between their Lβ/Lα phase transition temperatures. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/192062 Frías, María de los Ángeles; Benesch, Matthew G. K.; Lewis, Ruthven N. A. H.; McElhaney, Ronald N.; On the miscibility of cardiolipin with 1,2-diacyl phosphoglycerides: Binary mixtures of dimyristoylphosphatidylethanolamine and tetramyristoylcardiolipin; Elsevier Science; Biochimica et Biophysica Acta - Biomembranes; 1808; 3; 3-2011; 774-783 0005-2736 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/192062 |
identifier_str_mv |
Frías, María de los Ángeles; Benesch, Matthew G. K.; Lewis, Ruthven N. A. H.; McElhaney, Ronald N.; On the miscibility of cardiolipin with 1,2-diacyl phosphoglycerides: Binary mixtures of dimyristoylphosphatidylethanolamine and tetramyristoylcardiolipin; Elsevier Science; Biochimica et Biophysica Acta - Biomembranes; 1808; 3; 3-2011; 774-783 0005-2736 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0005273610004451 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bbamem.2010.12.010 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613121020264448 |
score |
13.070432 |