Reactivity of bioinspired magnesium-organic networks under CO2 and O2 exposure

Autores
Hurtado Salinas, Daniel E.; Sarasola, Ane; Stel, Bart; Cometto, Fernando Pablo; Kern, Klaus; Arnau, Andrés; Lingenfelder, Magalí Alejandra
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Photosynthesis is the model system for energy conversion. It uses CO2 as a starting reactant to convert solar energy into chemical energy, i.e., organic molecules or biomass. The first and rate-determining step of this cycle is the immobilization and activation of CO2, catalyzed by RuBisCO enzyme, the most abundant protein on earth. Here, we propose a strategy to develop novel biomimetic two-dimensional (2D) nanostructures for CO2 adsorption at room temperature by reductionist mimicking of the Mg-carboxylate RuBisCO active site. We present a method to synthesize a 2D surface-supported system based on Mg2+ centers stabilized by a carboxylate environment and track their structural dynamics and reactivity under either CO2 or O2 exposure at room temperature. The CO2 molecules adsorb temporarily on the Mg2+ centers, producing a charge imbalance that catalyzes a phase transition into a different configuration, whereas O2 adsorbs on the Mg2+ center, giving rise to a distortion in the metal-organic bonds that eventually leads to the collapse of the structure. The combination of bioinspired synthesis and surface reactivity studies demonstrated here for Mg-based 2D ionic networks holds promise for the development of new catalysts that can work at room temperature.
Fil: Hurtado Salinas, Daniel E.. Ecole Polytechnique Federale de Lausanne; Francia
Fil: Sarasola, Ane. Universidad del País Vasco; España. Donostia International Physics Center; España
Fil: Stel, Bart. Ecole Polytechnique Federale de Lausanne; Francia
Fil: Cometto, Fernando Pablo. Ecole Polytechnique Federale de Lausanne; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Kern, Klaus. Ecole Polytechnique Federale de Lausanne; Francia. Max Planck Institute For Solid State Research; Alemania
Fil: Arnau, Andrés. Universidad del País Vasco; España
Fil: Lingenfelder, Magalí Alejandra. Swiss Federal Institute Of Technology Epfl, Lausanne; Suiza
Materia
MOCNs
BIOINSPIRED
STM
XPS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/125703

id CONICETDig_996501dbc7157439ffde315c6db1ebd2
oai_identifier_str oai:ri.conicet.gov.ar:11336/125703
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Reactivity of bioinspired magnesium-organic networks under CO2 and O2 exposureHurtado Salinas, Daniel E.Sarasola, AneStel, BartCometto, Fernando PabloKern, KlausArnau, AndrésLingenfelder, Magalí AlejandraMOCNsBIOINSPIREDSTMXPShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Photosynthesis is the model system for energy conversion. It uses CO2 as a starting reactant to convert solar energy into chemical energy, i.e., organic molecules or biomass. The first and rate-determining step of this cycle is the immobilization and activation of CO2, catalyzed by RuBisCO enzyme, the most abundant protein on earth. Here, we propose a strategy to develop novel biomimetic two-dimensional (2D) nanostructures for CO2 adsorption at room temperature by reductionist mimicking of the Mg-carboxylate RuBisCO active site. We present a method to synthesize a 2D surface-supported system based on Mg2+ centers stabilized by a carboxylate environment and track their structural dynamics and reactivity under either CO2 or O2 exposure at room temperature. The CO2 molecules adsorb temporarily on the Mg2+ centers, producing a charge imbalance that catalyzes a phase transition into a different configuration, whereas O2 adsorbs on the Mg2+ center, giving rise to a distortion in the metal-organic bonds that eventually leads to the collapse of the structure. The combination of bioinspired synthesis and surface reactivity studies demonstrated here for Mg-based 2D ionic networks holds promise for the development of new catalysts that can work at room temperature.Fil: Hurtado Salinas, Daniel E.. Ecole Polytechnique Federale de Lausanne; FranciaFil: Sarasola, Ane. Universidad del País Vasco; España. Donostia International Physics Center; EspañaFil: Stel, Bart. Ecole Polytechnique Federale de Lausanne; FranciaFil: Cometto, Fernando Pablo. Ecole Polytechnique Federale de Lausanne; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Kern, Klaus. Ecole Polytechnique Federale de Lausanne; Francia. Max Planck Institute For Solid State Research; AlemaniaFil: Arnau, Andrés. Universidad del País Vasco; EspañaFil: Lingenfelder, Magalí Alejandra. Swiss Federal Institute Of Technology Epfl, Lausanne; SuizaAmerican Chemical Society2019-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125703Hurtado Salinas, Daniel E.; Sarasola, Ane; Stel, Bart; Cometto, Fernando Pablo; Kern, Klaus; et al.; Reactivity of bioinspired magnesium-organic networks under CO2 and O2 exposure; American Chemical Society; ACS Omega; 4; 6; 6-2019; 9850-98592470-1343CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acsomega.9b00762info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsomega.9b00762info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:51Zoai:ri.conicet.gov.ar:11336/125703instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:51.786CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Reactivity of bioinspired magnesium-organic networks under CO2 and O2 exposure
title Reactivity of bioinspired magnesium-organic networks under CO2 and O2 exposure
spellingShingle Reactivity of bioinspired magnesium-organic networks under CO2 and O2 exposure
Hurtado Salinas, Daniel E.
MOCNs
BIOINSPIRED
STM
XPS
title_short Reactivity of bioinspired magnesium-organic networks under CO2 and O2 exposure
title_full Reactivity of bioinspired magnesium-organic networks under CO2 and O2 exposure
title_fullStr Reactivity of bioinspired magnesium-organic networks under CO2 and O2 exposure
title_full_unstemmed Reactivity of bioinspired magnesium-organic networks under CO2 and O2 exposure
title_sort Reactivity of bioinspired magnesium-organic networks under CO2 and O2 exposure
dc.creator.none.fl_str_mv Hurtado Salinas, Daniel E.
Sarasola, Ane
Stel, Bart
Cometto, Fernando Pablo
Kern, Klaus
Arnau, Andrés
Lingenfelder, Magalí Alejandra
author Hurtado Salinas, Daniel E.
author_facet Hurtado Salinas, Daniel E.
Sarasola, Ane
Stel, Bart
Cometto, Fernando Pablo
Kern, Klaus
Arnau, Andrés
Lingenfelder, Magalí Alejandra
author_role author
author2 Sarasola, Ane
Stel, Bart
Cometto, Fernando Pablo
Kern, Klaus
Arnau, Andrés
Lingenfelder, Magalí Alejandra
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv MOCNs
BIOINSPIRED
STM
XPS
topic MOCNs
BIOINSPIRED
STM
XPS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Photosynthesis is the model system for energy conversion. It uses CO2 as a starting reactant to convert solar energy into chemical energy, i.e., organic molecules or biomass. The first and rate-determining step of this cycle is the immobilization and activation of CO2, catalyzed by RuBisCO enzyme, the most abundant protein on earth. Here, we propose a strategy to develop novel biomimetic two-dimensional (2D) nanostructures for CO2 adsorption at room temperature by reductionist mimicking of the Mg-carboxylate RuBisCO active site. We present a method to synthesize a 2D surface-supported system based on Mg2+ centers stabilized by a carboxylate environment and track their structural dynamics and reactivity under either CO2 or O2 exposure at room temperature. The CO2 molecules adsorb temporarily on the Mg2+ centers, producing a charge imbalance that catalyzes a phase transition into a different configuration, whereas O2 adsorbs on the Mg2+ center, giving rise to a distortion in the metal-organic bonds that eventually leads to the collapse of the structure. The combination of bioinspired synthesis and surface reactivity studies demonstrated here for Mg-based 2D ionic networks holds promise for the development of new catalysts that can work at room temperature.
Fil: Hurtado Salinas, Daniel E.. Ecole Polytechnique Federale de Lausanne; Francia
Fil: Sarasola, Ane. Universidad del País Vasco; España. Donostia International Physics Center; España
Fil: Stel, Bart. Ecole Polytechnique Federale de Lausanne; Francia
Fil: Cometto, Fernando Pablo. Ecole Polytechnique Federale de Lausanne; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Kern, Klaus. Ecole Polytechnique Federale de Lausanne; Francia. Max Planck Institute For Solid State Research; Alemania
Fil: Arnau, Andrés. Universidad del País Vasco; España
Fil: Lingenfelder, Magalí Alejandra. Swiss Federal Institute Of Technology Epfl, Lausanne; Suiza
description Photosynthesis is the model system for energy conversion. It uses CO2 as a starting reactant to convert solar energy into chemical energy, i.e., organic molecules or biomass. The first and rate-determining step of this cycle is the immobilization and activation of CO2, catalyzed by RuBisCO enzyme, the most abundant protein on earth. Here, we propose a strategy to develop novel biomimetic two-dimensional (2D) nanostructures for CO2 adsorption at room temperature by reductionist mimicking of the Mg-carboxylate RuBisCO active site. We present a method to synthesize a 2D surface-supported system based on Mg2+ centers stabilized by a carboxylate environment and track their structural dynamics and reactivity under either CO2 or O2 exposure at room temperature. The CO2 molecules adsorb temporarily on the Mg2+ centers, producing a charge imbalance that catalyzes a phase transition into a different configuration, whereas O2 adsorbs on the Mg2+ center, giving rise to a distortion in the metal-organic bonds that eventually leads to the collapse of the structure. The combination of bioinspired synthesis and surface reactivity studies demonstrated here for Mg-based 2D ionic networks holds promise for the development of new catalysts that can work at room temperature.
publishDate 2019
dc.date.none.fl_str_mv 2019-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/125703
Hurtado Salinas, Daniel E.; Sarasola, Ane; Stel, Bart; Cometto, Fernando Pablo; Kern, Klaus; et al.; Reactivity of bioinspired magnesium-organic networks under CO2 and O2 exposure; American Chemical Society; ACS Omega; 4; 6; 6-2019; 9850-9859
2470-1343
CONICET Digital
CONICET
url http://hdl.handle.net/11336/125703
identifier_str_mv Hurtado Salinas, Daniel E.; Sarasola, Ane; Stel, Bart; Cometto, Fernando Pablo; Kern, Klaus; et al.; Reactivity of bioinspired magnesium-organic networks under CO2 and O2 exposure; American Chemical Society; ACS Omega; 4; 6; 6-2019; 9850-9859
2470-1343
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/acsomega.9b00762
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsomega.9b00762
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270096801660928
score 13.13397