Role of Anisotropy, Frequency, and Interactions in Magnetic Hyperthermia Applications: Noninteracting Nanoparticles and Linear Chain Arrangements

Autores
Valdés, Daniela Paola; Lima, Enio Junior; Zysler, Roberto Daniel; Goya, Gerardo Fabián; de Biasi, Emilio
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Efforts by numerous research groups have provided a deeper insight into the physical mechanisms behind the power absorption of single-domain magnetic nanoparticles in magnetic-fluid-hyperthermia applications and theoretical models now account for the main experimental observations. However, the role of all parameters relevant to the magnetic relaxation remains a matter of debate. Here, we employ a nonlinear model for the magnetic relaxation of single-domain magnetic nanoparticles with uniaxial effective anisotropy and evaluate the influence of particle-intrinsic parameters as well as experimental conditions on the power absorption of both noninteracting and interacting systems (linear arrangements). These effects are assessed through the enclosed hysteresis area of the magnetization loops as a function of relative anisotropy hK (the anisotropy field with respect to the amplitude of the ac field), i.e., the "area curve"of the system. These curves can be divided into four regions with distinct magnetic responses and boundaries that depend on the particle size, frequency of the applied field and interactions. Interactions change the effective anisotropy of the system and shift the area curve towards lower hK values. For the low relative anisotropy range, dipolar interactions increase the area of the hysteresis loops [thus, the specific power absorption (SPA)], while they are detrimental or produce nonsignificant effects for the range of high relative anisotropy. Our study resolves seemingly contradictory results of interaction effects in linear arrangements recently reported in the literature. Simulations of randomly oriented particles and chains were contrasted with the oriented cases. An analytical approach and the thermal interpretation of its validity range are discussed, both aimed at the design of nanoparticles and the choice of the experimental conditions for optimal heating. We find that systems with low-thermal-fluctuation influence are better candidates for the application due to their high SPA values.
Fil: Valdés, Daniela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Lima, Enio Junior. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Zysler, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Goya, Gerardo Fabián. Universidad de Zaragoza; España
Fil: de Biasi, Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Materia
hyphertermia
nanoparticles
magnetic interactions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/181799

id CONICETDig_995b18ed7bba088be26d000deefb74e8
oai_identifier_str oai:ri.conicet.gov.ar:11336/181799
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Role of Anisotropy, Frequency, and Interactions in Magnetic Hyperthermia Applications: Noninteracting Nanoparticles and Linear Chain ArrangementsValdés, Daniela PaolaLima, Enio JuniorZysler, Roberto DanielGoya, Gerardo Fabiánde Biasi, Emiliohyphertermiananoparticlesmagnetic interactionshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Efforts by numerous research groups have provided a deeper insight into the physical mechanisms behind the power absorption of single-domain magnetic nanoparticles in magnetic-fluid-hyperthermia applications and theoretical models now account for the main experimental observations. However, the role of all parameters relevant to the magnetic relaxation remains a matter of debate. Here, we employ a nonlinear model for the magnetic relaxation of single-domain magnetic nanoparticles with uniaxial effective anisotropy and evaluate the influence of particle-intrinsic parameters as well as experimental conditions on the power absorption of both noninteracting and interacting systems (linear arrangements). These effects are assessed through the enclosed hysteresis area of the magnetization loops as a function of relative anisotropy hK (the anisotropy field with respect to the amplitude of the ac field), i.e., the "area curve"of the system. These curves can be divided into four regions with distinct magnetic responses and boundaries that depend on the particle size, frequency of the applied field and interactions. Interactions change the effective anisotropy of the system and shift the area curve towards lower hK values. For the low relative anisotropy range, dipolar interactions increase the area of the hysteresis loops [thus, the specific power absorption (SPA)], while they are detrimental or produce nonsignificant effects for the range of high relative anisotropy. Our study resolves seemingly contradictory results of interaction effects in linear arrangements recently reported in the literature. Simulations of randomly oriented particles and chains were contrasted with the oriented cases. An analytical approach and the thermal interpretation of its validity range are discussed, both aimed at the design of nanoparticles and the choice of the experimental conditions for optimal heating. We find that systems with low-thermal-fluctuation influence are better candidates for the application due to their high SPA values.Fil: Valdés, Daniela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Lima, Enio Junior. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Zysler, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Goya, Gerardo Fabián. Universidad de Zaragoza; EspañaFil: de Biasi, Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaAmerican Physical Society2021-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/181799Valdés, Daniela Paola; Lima, Enio Junior; Zysler, Roberto Daniel; Goya, Gerardo Fabián; de Biasi, Emilio; Role of Anisotropy, Frequency, and Interactions in Magnetic Hyperthermia Applications: Noninteracting Nanoparticles and Linear Chain Arrangements; American Physical Society; Physical Review Applied; 15; 4; 4-2021; 1-182331-7019CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevApplied.15.044005info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevApplied.15.044005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:45Zoai:ri.conicet.gov.ar:11336/181799instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:46.01CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Role of Anisotropy, Frequency, and Interactions in Magnetic Hyperthermia Applications: Noninteracting Nanoparticles and Linear Chain Arrangements
title Role of Anisotropy, Frequency, and Interactions in Magnetic Hyperthermia Applications: Noninteracting Nanoparticles and Linear Chain Arrangements
spellingShingle Role of Anisotropy, Frequency, and Interactions in Magnetic Hyperthermia Applications: Noninteracting Nanoparticles and Linear Chain Arrangements
Valdés, Daniela Paola
hyphertermia
nanoparticles
magnetic interactions
title_short Role of Anisotropy, Frequency, and Interactions in Magnetic Hyperthermia Applications: Noninteracting Nanoparticles and Linear Chain Arrangements
title_full Role of Anisotropy, Frequency, and Interactions in Magnetic Hyperthermia Applications: Noninteracting Nanoparticles and Linear Chain Arrangements
title_fullStr Role of Anisotropy, Frequency, and Interactions in Magnetic Hyperthermia Applications: Noninteracting Nanoparticles and Linear Chain Arrangements
title_full_unstemmed Role of Anisotropy, Frequency, and Interactions in Magnetic Hyperthermia Applications: Noninteracting Nanoparticles and Linear Chain Arrangements
title_sort Role of Anisotropy, Frequency, and Interactions in Magnetic Hyperthermia Applications: Noninteracting Nanoparticles and Linear Chain Arrangements
dc.creator.none.fl_str_mv Valdés, Daniela Paola
Lima, Enio Junior
Zysler, Roberto Daniel
Goya, Gerardo Fabián
de Biasi, Emilio
author Valdés, Daniela Paola
author_facet Valdés, Daniela Paola
Lima, Enio Junior
Zysler, Roberto Daniel
Goya, Gerardo Fabián
de Biasi, Emilio
author_role author
author2 Lima, Enio Junior
Zysler, Roberto Daniel
Goya, Gerardo Fabián
de Biasi, Emilio
author2_role author
author
author
author
dc.subject.none.fl_str_mv hyphertermia
nanoparticles
magnetic interactions
topic hyphertermia
nanoparticles
magnetic interactions
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Efforts by numerous research groups have provided a deeper insight into the physical mechanisms behind the power absorption of single-domain magnetic nanoparticles in magnetic-fluid-hyperthermia applications and theoretical models now account for the main experimental observations. However, the role of all parameters relevant to the magnetic relaxation remains a matter of debate. Here, we employ a nonlinear model for the magnetic relaxation of single-domain magnetic nanoparticles with uniaxial effective anisotropy and evaluate the influence of particle-intrinsic parameters as well as experimental conditions on the power absorption of both noninteracting and interacting systems (linear arrangements). These effects are assessed through the enclosed hysteresis area of the magnetization loops as a function of relative anisotropy hK (the anisotropy field with respect to the amplitude of the ac field), i.e., the "area curve"of the system. These curves can be divided into four regions with distinct magnetic responses and boundaries that depend on the particle size, frequency of the applied field and interactions. Interactions change the effective anisotropy of the system and shift the area curve towards lower hK values. For the low relative anisotropy range, dipolar interactions increase the area of the hysteresis loops [thus, the specific power absorption (SPA)], while they are detrimental or produce nonsignificant effects for the range of high relative anisotropy. Our study resolves seemingly contradictory results of interaction effects in linear arrangements recently reported in the literature. Simulations of randomly oriented particles and chains were contrasted with the oriented cases. An analytical approach and the thermal interpretation of its validity range are discussed, both aimed at the design of nanoparticles and the choice of the experimental conditions for optimal heating. We find that systems with low-thermal-fluctuation influence are better candidates for the application due to their high SPA values.
Fil: Valdés, Daniela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Lima, Enio Junior. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Zysler, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Goya, Gerardo Fabián. Universidad de Zaragoza; España
Fil: de Biasi, Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
description Efforts by numerous research groups have provided a deeper insight into the physical mechanisms behind the power absorption of single-domain magnetic nanoparticles in magnetic-fluid-hyperthermia applications and theoretical models now account for the main experimental observations. However, the role of all parameters relevant to the magnetic relaxation remains a matter of debate. Here, we employ a nonlinear model for the magnetic relaxation of single-domain magnetic nanoparticles with uniaxial effective anisotropy and evaluate the influence of particle-intrinsic parameters as well as experimental conditions on the power absorption of both noninteracting and interacting systems (linear arrangements). These effects are assessed through the enclosed hysteresis area of the magnetization loops as a function of relative anisotropy hK (the anisotropy field with respect to the amplitude of the ac field), i.e., the "area curve"of the system. These curves can be divided into four regions with distinct magnetic responses and boundaries that depend on the particle size, frequency of the applied field and interactions. Interactions change the effective anisotropy of the system and shift the area curve towards lower hK values. For the low relative anisotropy range, dipolar interactions increase the area of the hysteresis loops [thus, the specific power absorption (SPA)], while they are detrimental or produce nonsignificant effects for the range of high relative anisotropy. Our study resolves seemingly contradictory results of interaction effects in linear arrangements recently reported in the literature. Simulations of randomly oriented particles and chains were contrasted with the oriented cases. An analytical approach and the thermal interpretation of its validity range are discussed, both aimed at the design of nanoparticles and the choice of the experimental conditions for optimal heating. We find that systems with low-thermal-fluctuation influence are better candidates for the application due to their high SPA values.
publishDate 2021
dc.date.none.fl_str_mv 2021-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/181799
Valdés, Daniela Paola; Lima, Enio Junior; Zysler, Roberto Daniel; Goya, Gerardo Fabián; de Biasi, Emilio; Role of Anisotropy, Frequency, and Interactions in Magnetic Hyperthermia Applications: Noninteracting Nanoparticles and Linear Chain Arrangements; American Physical Society; Physical Review Applied; 15; 4; 4-2021; 1-18
2331-7019
CONICET Digital
CONICET
url http://hdl.handle.net/11336/181799
identifier_str_mv Valdés, Daniela Paola; Lima, Enio Junior; Zysler, Roberto Daniel; Goya, Gerardo Fabián; de Biasi, Emilio; Role of Anisotropy, Frequency, and Interactions in Magnetic Hyperthermia Applications: Noninteracting Nanoparticles and Linear Chain Arrangements; American Physical Society; Physical Review Applied; 15; 4; 4-2021; 1-18
2331-7019
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevApplied.15.044005
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevApplied.15.044005
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269245950394368
score 13.13397