Thermographical Method to Assess the Performance of Magnetic Nanoparticles in Hyperthermia Experiments through Spatiotemporal Temperature Profiles
- Autores
- Valdés, Daniela Paola; Torres, T. E.; Moreno Maldonado, Ana Carolina; Urretavizcaya, Guillermina; Nadal, Marcela; Vasquez Mansilla, Marcelo; Zysler, Roberto Daniel; Goya, G. F.; de Biasi, Emilio; Lima, Enio Junior
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The evaluation of the specific power absorption of magnetic nanoparticles (MNPs) for magnetic hyperthermia (MH) applications has been performed through either local temperature probing or magnetic measurements so far. Each of these methods has advantages and drawbacks, and the concurrent use of both techniques offers the most reliable results. In this work, we propose an alternative strategy based on thermographic images to obtain two-dimensional temperature maps that allow the determination of the power absorption and other relevant thermodynamic parameters in MH experiments in a noninvasive way. This procedure and analysis are convenient to determine the heating performance of MNPs under the viscous conditions of in vitro and in vivo assays and to follow the time evolution of the temperature spatial distribution in the sample simultaneously. For this purpose, iron-oxide MNPs with 25-nm average diameter are coated with glucose and dispersed into different 8% polyacrylamide gels, which serve as phantoms that emulate intracellular viscosity. Power absorption experiments are performed under ac magnetic fields (H= 32 kA/m; f= 350 kHz) and the temperature evolution of the sample is monitored through a commercial thermographic camera (resolution, 240×180 pixels; temperature accuracy, 2 K). To complement this simple setup, we design a program consisting of a detailed procedure for extracting graphical information from the video frames and obtaining spatiotemporal temperature profiles. The analysis of these profiles allows us to gather information on temperature, energy, power, and heat flux during the MH experiments. This method and analysis allows us to identify spatial inhomogeneities in samples, such as different local MNP density, which is extremely useful for the development of the therapy in vitro and the application in vivo where MNP aggregation is often present.
Fil: Valdés, Daniela Paola. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina
Fil: Torres, T. E.. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina
Fil: Moreno Maldonado, Ana Carolina. Universidad de Zaragoza; España
Fil: Urretavizcaya, Guillermina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Nadal, Marcela. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina
Fil: Vasquez Mansilla, Marcelo. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina
Fil: Zysler, Roberto Daniel. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina
Fil: Goya, G. F.. Universidad de Zaragoza; España
Fil: de Biasi, Emilio. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina
Fil: Lima, Enio Junior. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina - Materia
-
Thermographical Method
Hypertermia
magnetic nanoparticles
heat transference - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/224801
Ver los metadatos del registro completo
| id |
CONICETDig_0e34d8148625471a9e6bf00c05190485 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/224801 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Thermographical Method to Assess the Performance of Magnetic Nanoparticles in Hyperthermia Experiments through Spatiotemporal Temperature ProfilesValdés, Daniela PaolaTorres, T. E.Moreno Maldonado, Ana CarolinaUrretavizcaya, GuillerminaNadal, MarcelaVasquez Mansilla, MarceloZysler, Roberto DanielGoya, G. F.de Biasi, EmilioLima, Enio JuniorThermographical MethodHypertermiamagnetic nanoparticlesheat transferencehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The evaluation of the specific power absorption of magnetic nanoparticles (MNPs) for magnetic hyperthermia (MH) applications has been performed through either local temperature probing or magnetic measurements so far. Each of these methods has advantages and drawbacks, and the concurrent use of both techniques offers the most reliable results. In this work, we propose an alternative strategy based on thermographic images to obtain two-dimensional temperature maps that allow the determination of the power absorption and other relevant thermodynamic parameters in MH experiments in a noninvasive way. This procedure and analysis are convenient to determine the heating performance of MNPs under the viscous conditions of in vitro and in vivo assays and to follow the time evolution of the temperature spatial distribution in the sample simultaneously. For this purpose, iron-oxide MNPs with 25-nm average diameter are coated with glucose and dispersed into different 8% polyacrylamide gels, which serve as phantoms that emulate intracellular viscosity. Power absorption experiments are performed under ac magnetic fields (H= 32 kA/m; f= 350 kHz) and the temperature evolution of the sample is monitored through a commercial thermographic camera (resolution, 240×180 pixels; temperature accuracy, 2 K). To complement this simple setup, we design a program consisting of a detailed procedure for extracting graphical information from the video frames and obtaining spatiotemporal temperature profiles. The analysis of these profiles allows us to gather information on temperature, energy, power, and heat flux during the MH experiments. This method and analysis allows us to identify spatial inhomogeneities in samples, such as different local MNP density, which is extremely useful for the development of the therapy in vitro and the application in vivo where MNP aggregation is often present.Fil: Valdés, Daniela Paola. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; ArgentinaFil: Torres, T. E.. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; ArgentinaFil: Moreno Maldonado, Ana Carolina. Universidad de Zaragoza; EspañaFil: Urretavizcaya, Guillermina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Nadal, Marcela. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Vasquez Mansilla, Marcelo. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Zysler, Roberto Daniel. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; ArgentinaFil: Goya, G. F.. Universidad de Zaragoza; EspañaFil: de Biasi, Emilio. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Lima, Enio Junior. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaAmerican Physical Society2023-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/224801Valdés, Daniela Paola; Torres, T. E.; Moreno Maldonado, Ana Carolina; Urretavizcaya, Guillermina; Nadal, Marcela; et al.; Thermographical Method to Assess the Performance of Magnetic Nanoparticles in Hyperthermia Experiments through Spatiotemporal Temperature Profiles; American Physical Society; Physical Review Applied; 19; 1; 1-2023; 1-132331-7019CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevApplied.19.014042info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:56:46Zoai:ri.conicet.gov.ar:11336/224801instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:56:46.599CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Thermographical Method to Assess the Performance of Magnetic Nanoparticles in Hyperthermia Experiments through Spatiotemporal Temperature Profiles |
| title |
Thermographical Method to Assess the Performance of Magnetic Nanoparticles in Hyperthermia Experiments through Spatiotemporal Temperature Profiles |
| spellingShingle |
Thermographical Method to Assess the Performance of Magnetic Nanoparticles in Hyperthermia Experiments through Spatiotemporal Temperature Profiles Valdés, Daniela Paola Thermographical Method Hypertermia magnetic nanoparticles heat transference |
| title_short |
Thermographical Method to Assess the Performance of Magnetic Nanoparticles in Hyperthermia Experiments through Spatiotemporal Temperature Profiles |
| title_full |
Thermographical Method to Assess the Performance of Magnetic Nanoparticles in Hyperthermia Experiments through Spatiotemporal Temperature Profiles |
| title_fullStr |
Thermographical Method to Assess the Performance of Magnetic Nanoparticles in Hyperthermia Experiments through Spatiotemporal Temperature Profiles |
| title_full_unstemmed |
Thermographical Method to Assess the Performance of Magnetic Nanoparticles in Hyperthermia Experiments through Spatiotemporal Temperature Profiles |
| title_sort |
Thermographical Method to Assess the Performance of Magnetic Nanoparticles in Hyperthermia Experiments through Spatiotemporal Temperature Profiles |
| dc.creator.none.fl_str_mv |
Valdés, Daniela Paola Torres, T. E. Moreno Maldonado, Ana Carolina Urretavizcaya, Guillermina Nadal, Marcela Vasquez Mansilla, Marcelo Zysler, Roberto Daniel Goya, G. F. de Biasi, Emilio Lima, Enio Junior |
| author |
Valdés, Daniela Paola |
| author_facet |
Valdés, Daniela Paola Torres, T. E. Moreno Maldonado, Ana Carolina Urretavizcaya, Guillermina Nadal, Marcela Vasquez Mansilla, Marcelo Zysler, Roberto Daniel Goya, G. F. de Biasi, Emilio Lima, Enio Junior |
| author_role |
author |
| author2 |
Torres, T. E. Moreno Maldonado, Ana Carolina Urretavizcaya, Guillermina Nadal, Marcela Vasquez Mansilla, Marcelo Zysler, Roberto Daniel Goya, G. F. de Biasi, Emilio Lima, Enio Junior |
| author2_role |
author author author author author author author author author |
| dc.subject.none.fl_str_mv |
Thermographical Method Hypertermia magnetic nanoparticles heat transference |
| topic |
Thermographical Method Hypertermia magnetic nanoparticles heat transference |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The evaluation of the specific power absorption of magnetic nanoparticles (MNPs) for magnetic hyperthermia (MH) applications has been performed through either local temperature probing or magnetic measurements so far. Each of these methods has advantages and drawbacks, and the concurrent use of both techniques offers the most reliable results. In this work, we propose an alternative strategy based on thermographic images to obtain two-dimensional temperature maps that allow the determination of the power absorption and other relevant thermodynamic parameters in MH experiments in a noninvasive way. This procedure and analysis are convenient to determine the heating performance of MNPs under the viscous conditions of in vitro and in vivo assays and to follow the time evolution of the temperature spatial distribution in the sample simultaneously. For this purpose, iron-oxide MNPs with 25-nm average diameter are coated with glucose and dispersed into different 8% polyacrylamide gels, which serve as phantoms that emulate intracellular viscosity. Power absorption experiments are performed under ac magnetic fields (H= 32 kA/m; f= 350 kHz) and the temperature evolution of the sample is monitored through a commercial thermographic camera (resolution, 240×180 pixels; temperature accuracy, 2 K). To complement this simple setup, we design a program consisting of a detailed procedure for extracting graphical information from the video frames and obtaining spatiotemporal temperature profiles. The analysis of these profiles allows us to gather information on temperature, energy, power, and heat flux during the MH experiments. This method and analysis allows us to identify spatial inhomogeneities in samples, such as different local MNP density, which is extremely useful for the development of the therapy in vitro and the application in vivo where MNP aggregation is often present. Fil: Valdés, Daniela Paola. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina Fil: Torres, T. E.. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina Fil: Moreno Maldonado, Ana Carolina. Universidad de Zaragoza; España Fil: Urretavizcaya, Guillermina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Nadal, Marcela. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina Fil: Vasquez Mansilla, Marcelo. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina Fil: Zysler, Roberto Daniel. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina Fil: Goya, G. F.. Universidad de Zaragoza; España Fil: de Biasi, Emilio. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina Fil: Lima, Enio Junior. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina |
| description |
The evaluation of the specific power absorption of magnetic nanoparticles (MNPs) for magnetic hyperthermia (MH) applications has been performed through either local temperature probing or magnetic measurements so far. Each of these methods has advantages and drawbacks, and the concurrent use of both techniques offers the most reliable results. In this work, we propose an alternative strategy based on thermographic images to obtain two-dimensional temperature maps that allow the determination of the power absorption and other relevant thermodynamic parameters in MH experiments in a noninvasive way. This procedure and analysis are convenient to determine the heating performance of MNPs under the viscous conditions of in vitro and in vivo assays and to follow the time evolution of the temperature spatial distribution in the sample simultaneously. For this purpose, iron-oxide MNPs with 25-nm average diameter are coated with glucose and dispersed into different 8% polyacrylamide gels, which serve as phantoms that emulate intracellular viscosity. Power absorption experiments are performed under ac magnetic fields (H= 32 kA/m; f= 350 kHz) and the temperature evolution of the sample is monitored through a commercial thermographic camera (resolution, 240×180 pixels; temperature accuracy, 2 K). To complement this simple setup, we design a program consisting of a detailed procedure for extracting graphical information from the video frames and obtaining spatiotemporal temperature profiles. The analysis of these profiles allows us to gather information on temperature, energy, power, and heat flux during the MH experiments. This method and analysis allows us to identify spatial inhomogeneities in samples, such as different local MNP density, which is extremely useful for the development of the therapy in vitro and the application in vivo where MNP aggregation is often present. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/224801 Valdés, Daniela Paola; Torres, T. E.; Moreno Maldonado, Ana Carolina; Urretavizcaya, Guillermina; Nadal, Marcela; et al.; Thermographical Method to Assess the Performance of Magnetic Nanoparticles in Hyperthermia Experiments through Spatiotemporal Temperature Profiles; American Physical Society; Physical Review Applied; 19; 1; 1-2023; 1-13 2331-7019 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/224801 |
| identifier_str_mv |
Valdés, Daniela Paola; Torres, T. E.; Moreno Maldonado, Ana Carolina; Urretavizcaya, Guillermina; Nadal, Marcela; et al.; Thermographical Method to Assess the Performance of Magnetic Nanoparticles in Hyperthermia Experiments through Spatiotemporal Temperature Profiles; American Physical Society; Physical Review Applied; 19; 1; 1-2023; 1-13 2331-7019 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevApplied.19.014042 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Physical Society |
| publisher.none.fl_str_mv |
American Physical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598344911290368 |
| score |
12.976206 |