A numerical algorithm for zero counting. III: Randomization and condition
- Autores
- Cucker, Felipe; Krick, Teresa Elena Genoveva; Malajovich, Gregorio; Wschebor, Mario
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In a recent paper [7] we analyzed a numerical algorithm for computing the number of real zeros of a polynomial system. The analysis relied on a condition number κ(f) for the input system f. In this paper we look at κ(f) as a random variable derived from imposing a probability measure on the space of polynomial systems and give bounds for both the tail P{κ(f) > a} and the expected value E(log κ(f)).
Fil: Cucker, Felipe. City University of Hong Kong; Hong Kong
Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Malajovich, Gregorio. Universidade Federal do Rio de Janeiro; Brasil
Fil: Wschebor, Mario. Universidad de la República; Uruguay - Materia
-
Zero-counting
Finite-precision
Condition numbers
Average-case analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19996
Ver los metadatos del registro completo
id |
CONICETDig_9922599506c41d0f176445630fe0e4d4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19996 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A numerical algorithm for zero counting. III: Randomization and conditionCucker, FelipeKrick, Teresa Elena GenovevaMalajovich, GregorioWschebor, MarioZero-countingFinite-precisionCondition numbersAverage-case analysishttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In a recent paper [7] we analyzed a numerical algorithm for computing the number of real zeros of a polynomial system. The analysis relied on a condition number κ(f) for the input system f. In this paper we look at κ(f) as a random variable derived from imposing a probability measure on the space of polynomial systems and give bounds for both the tail P{κ(f) > a} and the expected value E(log κ(f)).Fil: Cucker, Felipe. City University of Hong Kong; Hong KongFil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Malajovich, Gregorio. Universidade Federal do Rio de Janeiro; BrasilFil: Wschebor, Mario. Universidad de la República; UruguayElsevier2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19996Cucker, Felipe; Krick, Teresa Elena Genoveva; Malajovich, Gregorio; Wschebor, Mario; A numerical algorithm for zero counting. III: Randomization and condition; Elsevier; Advances In Applied Mathematics; 48; 1; 1-2012; 215-2480196-8858CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.aam.2011.07.001info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0196885811000728info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1007.1597info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:40:46Zoai:ri.conicet.gov.ar:11336/19996instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:40:46.325CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A numerical algorithm for zero counting. III: Randomization and condition |
title |
A numerical algorithm for zero counting. III: Randomization and condition |
spellingShingle |
A numerical algorithm for zero counting. III: Randomization and condition Cucker, Felipe Zero-counting Finite-precision Condition numbers Average-case analysis |
title_short |
A numerical algorithm for zero counting. III: Randomization and condition |
title_full |
A numerical algorithm for zero counting. III: Randomization and condition |
title_fullStr |
A numerical algorithm for zero counting. III: Randomization and condition |
title_full_unstemmed |
A numerical algorithm for zero counting. III: Randomization and condition |
title_sort |
A numerical algorithm for zero counting. III: Randomization and condition |
dc.creator.none.fl_str_mv |
Cucker, Felipe Krick, Teresa Elena Genoveva Malajovich, Gregorio Wschebor, Mario |
author |
Cucker, Felipe |
author_facet |
Cucker, Felipe Krick, Teresa Elena Genoveva Malajovich, Gregorio Wschebor, Mario |
author_role |
author |
author2 |
Krick, Teresa Elena Genoveva Malajovich, Gregorio Wschebor, Mario |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Zero-counting Finite-precision Condition numbers Average-case analysis |
topic |
Zero-counting Finite-precision Condition numbers Average-case analysis |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In a recent paper [7] we analyzed a numerical algorithm for computing the number of real zeros of a polynomial system. The analysis relied on a condition number κ(f) for the input system f. In this paper we look at κ(f) as a random variable derived from imposing a probability measure on the space of polynomial systems and give bounds for both the tail P{κ(f) > a} and the expected value E(log κ(f)). Fil: Cucker, Felipe. City University of Hong Kong; Hong Kong Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Malajovich, Gregorio. Universidade Federal do Rio de Janeiro; Brasil Fil: Wschebor, Mario. Universidad de la República; Uruguay |
description |
In a recent paper [7] we analyzed a numerical algorithm for computing the number of real zeros of a polynomial system. The analysis relied on a condition number κ(f) for the input system f. In this paper we look at κ(f) as a random variable derived from imposing a probability measure on the space of polynomial systems and give bounds for both the tail P{κ(f) > a} and the expected value E(log κ(f)). |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19996 Cucker, Felipe; Krick, Teresa Elena Genoveva; Malajovich, Gregorio; Wschebor, Mario; A numerical algorithm for zero counting. III: Randomization and condition; Elsevier; Advances In Applied Mathematics; 48; 1; 1-2012; 215-248 0196-8858 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19996 |
identifier_str_mv |
Cucker, Felipe; Krick, Teresa Elena Genoveva; Malajovich, Gregorio; Wschebor, Mario; A numerical algorithm for zero counting. III: Randomization and condition; Elsevier; Advances In Applied Mathematics; 48; 1; 1-2012; 215-248 0196-8858 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aam.2011.07.001 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0196885811000728 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1007.1597 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082900914601984 |
score |
13.22299 |