A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis
- Autores
- Cucker, Felipe; Krick, Teresa Elena Genoveva; Malajovich, Gregorio; Wschebor, Mario
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show a Condition Number Theorem for the condition number of zero counting for real polynomial systems. That is, we show that this condition number equals the inverse of the normalized distance to the set of ill-posed systems (i.e., those having multiple real zeros). As a consequence, a smoothed analysis of this condition number follows.
Fil: Cucker, Felipe. University of Hong Kong; China
Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Malajovich, Gregorio. Universidade Federal do Rio de Janeiro; Brasil
Fil: Wschebor, Mario. Universidad de la República; Uruguay - Materia
-
POLYNOMIAL SYSTEMS
ZERO COUNTING
CONDITION NUMBERS
SMOOTHED ANALYSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/244759
Ver los metadatos del registro completo
id |
CONICETDig_51a8f6f1b703a915c679450c199b07a5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/244759 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysisCucker, FelipeKrick, Teresa Elena GenovevaMalajovich, GregorioWschebor, MarioPOLYNOMIAL SYSTEMSZERO COUNTINGCONDITION NUMBERSSMOOTHED ANALYSIShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show a Condition Number Theorem for the condition number of zero counting for real polynomial systems. That is, we show that this condition number equals the inverse of the normalized distance to the set of ill-posed systems (i.e., those having multiple real zeros). As a consequence, a smoothed analysis of this condition number follows.Fil: Cucker, Felipe. University of Hong Kong; ChinaFil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Malajovich, Gregorio. Universidade Federal do Rio de Janeiro; BrasilFil: Wschebor, Mario. Universidad de la República; UruguayBirkhauser Verlag Ag2009-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/244759Cucker, Felipe; Krick, Teresa Elena Genoveva; Malajovich, Gregorio; Wschebor, Mario; A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis; Birkhauser Verlag Ag; Journal Of Fixed Point Theory And Applications; 6; 2; 11-2009; 285-2941661-7738CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11784-009-0127-4info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11784-009-0127-4info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/0909.4101info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:58:44Zoai:ri.conicet.gov.ar:11336/244759instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:58:44.964CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis |
title |
A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis |
spellingShingle |
A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis Cucker, Felipe POLYNOMIAL SYSTEMS ZERO COUNTING CONDITION NUMBERS SMOOTHED ANALYSIS |
title_short |
A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis |
title_full |
A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis |
title_fullStr |
A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis |
title_full_unstemmed |
A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis |
title_sort |
A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis |
dc.creator.none.fl_str_mv |
Cucker, Felipe Krick, Teresa Elena Genoveva Malajovich, Gregorio Wschebor, Mario |
author |
Cucker, Felipe |
author_facet |
Cucker, Felipe Krick, Teresa Elena Genoveva Malajovich, Gregorio Wschebor, Mario |
author_role |
author |
author2 |
Krick, Teresa Elena Genoveva Malajovich, Gregorio Wschebor, Mario |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
POLYNOMIAL SYSTEMS ZERO COUNTING CONDITION NUMBERS SMOOTHED ANALYSIS |
topic |
POLYNOMIAL SYSTEMS ZERO COUNTING CONDITION NUMBERS SMOOTHED ANALYSIS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We show a Condition Number Theorem for the condition number of zero counting for real polynomial systems. That is, we show that this condition number equals the inverse of the normalized distance to the set of ill-posed systems (i.e., those having multiple real zeros). As a consequence, a smoothed analysis of this condition number follows. Fil: Cucker, Felipe. University of Hong Kong; China Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Malajovich, Gregorio. Universidade Federal do Rio de Janeiro; Brasil Fil: Wschebor, Mario. Universidad de la República; Uruguay |
description |
We show a Condition Number Theorem for the condition number of zero counting for real polynomial systems. That is, we show that this condition number equals the inverse of the normalized distance to the set of ill-posed systems (i.e., those having multiple real zeros). As a consequence, a smoothed analysis of this condition number follows. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/244759 Cucker, Felipe; Krick, Teresa Elena Genoveva; Malajovich, Gregorio; Wschebor, Mario; A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis; Birkhauser Verlag Ag; Journal Of Fixed Point Theory And Applications; 6; 2; 11-2009; 285-294 1661-7738 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/244759 |
identifier_str_mv |
Cucker, Felipe; Krick, Teresa Elena Genoveva; Malajovich, Gregorio; Wschebor, Mario; A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis; Birkhauser Verlag Ag; Journal Of Fixed Point Theory And Applications; 6; 2; 11-2009; 285-294 1661-7738 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11784-009-0127-4 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11784-009-0127-4 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/0909.4101 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083128298307584 |
score |
13.22299 |