Optimal parameters and characteristics of a three degree of freedom dynamic vibration absorber

Autores
Febbo, Mariano
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The present study is devoted to the determination of the optimal parameters and characteristics of a three degree of freedom dynamic vibration absorber (3 DOF DVA) for the vibration reduction of a plate at a given point. The optimization scheme uses simulated annealing and constrained simulated annealing, which is capable of optimizing systems with a set of constraints. Comparisons between a 3 DOF DVA and multiple (5) 1 DOF DVAs show a better performance of the former for vibration reduction. Regarding the characteristics of the optimal 3 DOF DVA, numerical tests reveal that the absorber is robust under variations of the observation point and for 10 variations of its mass, stiffness and damping. From the analysis of parameter changes of the plate, it is found that the optimal 3 DOF DVA is almost insensitive to a mass change, and sensitive to a change of Young's modulus for low frequencies. In this case, a decrease in Young's modulus causes a decrease in its effectiveness, and an increase improves it. The study of the effect of the 3 DOF DVA location on its effectiveness reveals that the requirements of closeness of the absorber to an antinode of the bare primary structure and to the observation point improve its performance. Additionally, for a rotational mode of the 3-DOF DVA about some axis, the effectiveness of the absorber at a given frequency can be notably increased if it is located at a position of the primary system with an in-phase or out-of- phase motion of the attachment points according to the rotational-mode characteristics of the 3-DOF DVA at this frequency. © 2012 American Society of Mechanical Engineers.
Fil: Febbo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina. Universidad Nacional del Sur. Departamento de Física; Argentina
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/65838

id CONICETDig_98ca3c35b815589b1a977b256bc167b1
oai_identifier_str oai:ri.conicet.gov.ar:11336/65838
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Optimal parameters and characteristics of a three degree of freedom dynamic vibration absorberFebbo, Marianohttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2The present study is devoted to the determination of the optimal parameters and characteristics of a three degree of freedom dynamic vibration absorber (3 DOF DVA) for the vibration reduction of a plate at a given point. The optimization scheme uses simulated annealing and constrained simulated annealing, which is capable of optimizing systems with a set of constraints. Comparisons between a 3 DOF DVA and multiple (5) 1 DOF DVAs show a better performance of the former for vibration reduction. Regarding the characteristics of the optimal 3 DOF DVA, numerical tests reveal that the absorber is robust under variations of the observation point and for 10 variations of its mass, stiffness and damping. From the analysis of parameter changes of the plate, it is found that the optimal 3 DOF DVA is almost insensitive to a mass change, and sensitive to a change of Young's modulus for low frequencies. In this case, a decrease in Young's modulus causes a decrease in its effectiveness, and an increase improves it. The study of the effect of the 3 DOF DVA location on its effectiveness reveals that the requirements of closeness of the absorber to an antinode of the bare primary structure and to the observation point improve its performance. Additionally, for a rotational mode of the 3-DOF DVA about some axis, the effectiveness of the absorber at a given frequency can be notably increased if it is located at a position of the primary system with an in-phase or out-of- phase motion of the attachment points according to the rotational-mode characteristics of the 3-DOF DVA at this frequency. © 2012 American Society of Mechanical Engineers.Fil: Febbo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina. Universidad Nacional del Sur. Departamento de Física; ArgentinaAmerican Society of Mechanical Engineers2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/65838Febbo, Mariano; Optimal parameters and characteristics of a three degree of freedom dynamic vibration absorber; American Society of Mechanical Engineers; Journal Of Vibration And Acoustics-transactions Of The Asme; 134; 2; 4-2012; 021010-0212211048-9002CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1115/1.4004667info:eu-repo/semantics/altIdentifier/url/http://vibrationacoustics.asmedigitalcollection.asme.org/article.aspx?articleid=1471665info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:28Zoai:ri.conicet.gov.ar:11336/65838instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:28.503CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Optimal parameters and characteristics of a three degree of freedom dynamic vibration absorber
title Optimal parameters and characteristics of a three degree of freedom dynamic vibration absorber
spellingShingle Optimal parameters and characteristics of a three degree of freedom dynamic vibration absorber
Febbo, Mariano
title_short Optimal parameters and characteristics of a three degree of freedom dynamic vibration absorber
title_full Optimal parameters and characteristics of a three degree of freedom dynamic vibration absorber
title_fullStr Optimal parameters and characteristics of a three degree of freedom dynamic vibration absorber
title_full_unstemmed Optimal parameters and characteristics of a three degree of freedom dynamic vibration absorber
title_sort Optimal parameters and characteristics of a three degree of freedom dynamic vibration absorber
dc.creator.none.fl_str_mv Febbo, Mariano
author Febbo, Mariano
author_facet Febbo, Mariano
author_role author
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.1
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The present study is devoted to the determination of the optimal parameters and characteristics of a three degree of freedom dynamic vibration absorber (3 DOF DVA) for the vibration reduction of a plate at a given point. The optimization scheme uses simulated annealing and constrained simulated annealing, which is capable of optimizing systems with a set of constraints. Comparisons between a 3 DOF DVA and multiple (5) 1 DOF DVAs show a better performance of the former for vibration reduction. Regarding the characteristics of the optimal 3 DOF DVA, numerical tests reveal that the absorber is robust under variations of the observation point and for 10 variations of its mass, stiffness and damping. From the analysis of parameter changes of the plate, it is found that the optimal 3 DOF DVA is almost insensitive to a mass change, and sensitive to a change of Young's modulus for low frequencies. In this case, a decrease in Young's modulus causes a decrease in its effectiveness, and an increase improves it. The study of the effect of the 3 DOF DVA location on its effectiveness reveals that the requirements of closeness of the absorber to an antinode of the bare primary structure and to the observation point improve its performance. Additionally, for a rotational mode of the 3-DOF DVA about some axis, the effectiveness of the absorber at a given frequency can be notably increased if it is located at a position of the primary system with an in-phase or out-of- phase motion of the attachment points according to the rotational-mode characteristics of the 3-DOF DVA at this frequency. © 2012 American Society of Mechanical Engineers.
Fil: Febbo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina. Universidad Nacional del Sur. Departamento de Física; Argentina
description The present study is devoted to the determination of the optimal parameters and characteristics of a three degree of freedom dynamic vibration absorber (3 DOF DVA) for the vibration reduction of a plate at a given point. The optimization scheme uses simulated annealing and constrained simulated annealing, which is capable of optimizing systems with a set of constraints. Comparisons between a 3 DOF DVA and multiple (5) 1 DOF DVAs show a better performance of the former for vibration reduction. Regarding the characteristics of the optimal 3 DOF DVA, numerical tests reveal that the absorber is robust under variations of the observation point and for 10 variations of its mass, stiffness and damping. From the analysis of parameter changes of the plate, it is found that the optimal 3 DOF DVA is almost insensitive to a mass change, and sensitive to a change of Young's modulus for low frequencies. In this case, a decrease in Young's modulus causes a decrease in its effectiveness, and an increase improves it. The study of the effect of the 3 DOF DVA location on its effectiveness reveals that the requirements of closeness of the absorber to an antinode of the bare primary structure and to the observation point improve its performance. Additionally, for a rotational mode of the 3-DOF DVA about some axis, the effectiveness of the absorber at a given frequency can be notably increased if it is located at a position of the primary system with an in-phase or out-of- phase motion of the attachment points according to the rotational-mode characteristics of the 3-DOF DVA at this frequency. © 2012 American Society of Mechanical Engineers.
publishDate 2012
dc.date.none.fl_str_mv 2012-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/65838
Febbo, Mariano; Optimal parameters and characteristics of a three degree of freedom dynamic vibration absorber; American Society of Mechanical Engineers; Journal Of Vibration And Acoustics-transactions Of The Asme; 134; 2; 4-2012; 021010-021221
1048-9002
CONICET Digital
CONICET
url http://hdl.handle.net/11336/65838
identifier_str_mv Febbo, Mariano; Optimal parameters and characteristics of a three degree of freedom dynamic vibration absorber; American Society of Mechanical Engineers; Journal Of Vibration And Acoustics-transactions Of The Asme; 134; 2; 4-2012; 021010-021221
1048-9002
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1115/1.4004667
info:eu-repo/semantics/altIdentifier/url/http://vibrationacoustics.asmedigitalcollection.asme.org/article.aspx?articleid=1471665
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Society of Mechanical Engineers
publisher.none.fl_str_mv American Society of Mechanical Engineers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269582026342400
score 13.13397