Pseudoinvariance and the extra degree of freedom in f (T) gravity
- Autores
- Ferraro, Rafael; Guzmán Monsalve, María José
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nonlinear generalizations of teleparallel gravity entail the modification of a Lagrangian that is pseudoinvariant under local Lorentz transformations of the tetrad field. This procedure consequently leads to the loss of the local pseudoinvariance and the appearance of additional degrees of freedom (d.o.f.). The constraint structure of f (T) gravity suggests the existence of one extra d.o.f. when compared with general relativity, which should describe some aspect of the orientation of the tetrad. The purpose of this article is to better understand the nature of this extra d.o.f. by means of a toy model that mimics essential features of f ( T ) gravity. We find that the nonlinear modification of a Lagrangian L possessing a local rotational pseudoinvariance produces two types of solutions. In one case the original gauge-invariant variables—the analogue of the metric in teleparallelism—evolve like when governed by the (nondeformed) Lagrangian L ; these solutions are characterized by a (selectable) constant value of its Lagrangian, which is the manifestation of the extra d.o.f. In the other case, the solutions do contain new dynamics for the original gauge-invariant variables, but the extra d.o.f. does not materialize because the Lagrangian remains invariant on-shell. Coming back to f ( T ) gravity, the first case includes solutions where the torsion scalar T is a constant, to be chosen at the initial conditions (extra d.o.f.), and no new dynamics for the metric is expected. The latter case covers those solutions displaying a genuine modified gravity; T is not a constant, but it is (on-shell) invariant under Lorentz transformations depending only on time. Both kinds of f (T) solutions are exemplified in a flat Friedmann-Lemaître-Robertson-Walker universe. Finally, we present a toy model for a higher-order Lagrangian with rotational invariance [analogous to f (R) gravity] and derive its constraint structure and number of d.o.f.
Fil: Ferraro, Rafael. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Guzmán Monsalve, María José. Universidad de La Serena; Chile - Materia
-
ALTERNATIVE GRAVITY THEORIES
CLASSICAL MECHANICS
GENERAL RELATIVITY
HAMILTONIAN SYSTEMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/110837
Ver los metadatos del registro completo
id |
CONICETDig_e75e875f4b4ef529295351a0821df914 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/110837 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Pseudoinvariance and the extra degree of freedom in f (T) gravityFerraro, RafaelGuzmán Monsalve, María JoséALTERNATIVE GRAVITY THEORIESCLASSICAL MECHANICSGENERAL RELATIVITYHAMILTONIAN SYSTEMShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Nonlinear generalizations of teleparallel gravity entail the modification of a Lagrangian that is pseudoinvariant under local Lorentz transformations of the tetrad field. This procedure consequently leads to the loss of the local pseudoinvariance and the appearance of additional degrees of freedom (d.o.f.). The constraint structure of f (T) gravity suggests the existence of one extra d.o.f. when compared with general relativity, which should describe some aspect of the orientation of the tetrad. The purpose of this article is to better understand the nature of this extra d.o.f. by means of a toy model that mimics essential features of f ( T ) gravity. We find that the nonlinear modification of a Lagrangian L possessing a local rotational pseudoinvariance produces two types of solutions. In one case the original gauge-invariant variables—the analogue of the metric in teleparallelism—evolve like when governed by the (nondeformed) Lagrangian L ; these solutions are characterized by a (selectable) constant value of its Lagrangian, which is the manifestation of the extra d.o.f. In the other case, the solutions do contain new dynamics for the original gauge-invariant variables, but the extra d.o.f. does not materialize because the Lagrangian remains invariant on-shell. Coming back to f ( T ) gravity, the first case includes solutions where the torsion scalar T is a constant, to be chosen at the initial conditions (extra d.o.f.), and no new dynamics for the metric is expected. The latter case covers those solutions displaying a genuine modified gravity; T is not a constant, but it is (on-shell) invariant under Lorentz transformations depending only on time. Both kinds of f (T) solutions are exemplified in a flat Friedmann-Lemaître-Robertson-Walker universe. Finally, we present a toy model for a higher-order Lagrangian with rotational invariance [analogous to f (R) gravity] and derive its constraint structure and number of d.o.f.Fil: Ferraro, Rafael. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Guzmán Monsalve, María José. Universidad de La Serena; ChileAmerican Physical Society2020-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110837Ferraro, Rafael; Guzmán Monsalve, María José; Pseudoinvariance and the extra degree of freedom in f (T) gravity; American Physical Society; Physical Review D; 101; 8; 4-2020; 1-182470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.101.084017info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.101.084017info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.084017info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:10:19Zoai:ri.conicet.gov.ar:11336/110837instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:10:19.778CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Pseudoinvariance and the extra degree of freedom in f (T) gravity |
title |
Pseudoinvariance and the extra degree of freedom in f (T) gravity |
spellingShingle |
Pseudoinvariance and the extra degree of freedom in f (T) gravity Ferraro, Rafael ALTERNATIVE GRAVITY THEORIES CLASSICAL MECHANICS GENERAL RELATIVITY HAMILTONIAN SYSTEMS |
title_short |
Pseudoinvariance and the extra degree of freedom in f (T) gravity |
title_full |
Pseudoinvariance and the extra degree of freedom in f (T) gravity |
title_fullStr |
Pseudoinvariance and the extra degree of freedom in f (T) gravity |
title_full_unstemmed |
Pseudoinvariance and the extra degree of freedom in f (T) gravity |
title_sort |
Pseudoinvariance and the extra degree of freedom in f (T) gravity |
dc.creator.none.fl_str_mv |
Ferraro, Rafael Guzmán Monsalve, María José |
author |
Ferraro, Rafael |
author_facet |
Ferraro, Rafael Guzmán Monsalve, María José |
author_role |
author |
author2 |
Guzmán Monsalve, María José |
author2_role |
author |
dc.subject.none.fl_str_mv |
ALTERNATIVE GRAVITY THEORIES CLASSICAL MECHANICS GENERAL RELATIVITY HAMILTONIAN SYSTEMS |
topic |
ALTERNATIVE GRAVITY THEORIES CLASSICAL MECHANICS GENERAL RELATIVITY HAMILTONIAN SYSTEMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Nonlinear generalizations of teleparallel gravity entail the modification of a Lagrangian that is pseudoinvariant under local Lorentz transformations of the tetrad field. This procedure consequently leads to the loss of the local pseudoinvariance and the appearance of additional degrees of freedom (d.o.f.). The constraint structure of f (T) gravity suggests the existence of one extra d.o.f. when compared with general relativity, which should describe some aspect of the orientation of the tetrad. The purpose of this article is to better understand the nature of this extra d.o.f. by means of a toy model that mimics essential features of f ( T ) gravity. We find that the nonlinear modification of a Lagrangian L possessing a local rotational pseudoinvariance produces two types of solutions. In one case the original gauge-invariant variables—the analogue of the metric in teleparallelism—evolve like when governed by the (nondeformed) Lagrangian L ; these solutions are characterized by a (selectable) constant value of its Lagrangian, which is the manifestation of the extra d.o.f. In the other case, the solutions do contain new dynamics for the original gauge-invariant variables, but the extra d.o.f. does not materialize because the Lagrangian remains invariant on-shell. Coming back to f ( T ) gravity, the first case includes solutions where the torsion scalar T is a constant, to be chosen at the initial conditions (extra d.o.f.), and no new dynamics for the metric is expected. The latter case covers those solutions displaying a genuine modified gravity; T is not a constant, but it is (on-shell) invariant under Lorentz transformations depending only on time. Both kinds of f (T) solutions are exemplified in a flat Friedmann-Lemaître-Robertson-Walker universe. Finally, we present a toy model for a higher-order Lagrangian with rotational invariance [analogous to f (R) gravity] and derive its constraint structure and number of d.o.f. Fil: Ferraro, Rafael. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Guzmán Monsalve, María José. Universidad de La Serena; Chile |
description |
Nonlinear generalizations of teleparallel gravity entail the modification of a Lagrangian that is pseudoinvariant under local Lorentz transformations of the tetrad field. This procedure consequently leads to the loss of the local pseudoinvariance and the appearance of additional degrees of freedom (d.o.f.). The constraint structure of f (T) gravity suggests the existence of one extra d.o.f. when compared with general relativity, which should describe some aspect of the orientation of the tetrad. The purpose of this article is to better understand the nature of this extra d.o.f. by means of a toy model that mimics essential features of f ( T ) gravity. We find that the nonlinear modification of a Lagrangian L possessing a local rotational pseudoinvariance produces two types of solutions. In one case the original gauge-invariant variables—the analogue of the metric in teleparallelism—evolve like when governed by the (nondeformed) Lagrangian L ; these solutions are characterized by a (selectable) constant value of its Lagrangian, which is the manifestation of the extra d.o.f. In the other case, the solutions do contain new dynamics for the original gauge-invariant variables, but the extra d.o.f. does not materialize because the Lagrangian remains invariant on-shell. Coming back to f ( T ) gravity, the first case includes solutions where the torsion scalar T is a constant, to be chosen at the initial conditions (extra d.o.f.), and no new dynamics for the metric is expected. The latter case covers those solutions displaying a genuine modified gravity; T is not a constant, but it is (on-shell) invariant under Lorentz transformations depending only on time. Both kinds of f (T) solutions are exemplified in a flat Friedmann-Lemaître-Robertson-Walker universe. Finally, we present a toy model for a higher-order Lagrangian with rotational invariance [analogous to f (R) gravity] and derive its constraint structure and number of d.o.f. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/110837 Ferraro, Rafael; Guzmán Monsalve, María José; Pseudoinvariance and the extra degree of freedom in f (T) gravity; American Physical Society; Physical Review D; 101; 8; 4-2020; 1-18 2470-0010 2470-0029 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/110837 |
identifier_str_mv |
Ferraro, Rafael; Guzmán Monsalve, María José; Pseudoinvariance and the extra degree of freedom in f (T) gravity; American Physical Society; Physical Review D; 101; 8; 4-2020; 1-18 2470-0010 2470-0029 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.101.084017 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.101.084017 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.084017 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980518598017024 |
score |
12.993085 |