Tetragonal structure, anionic vacancies and catalytic activity of SO42−-ZrO2 catalysts for n-butane isomerization
- Autores
- Vera, Carlos Roman; Pieck, Carlos Luis; Shimizu, Kiyoyuki; Parera, Jose
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Abstract An assessment of the influence of the crystal structure, surface hydroxylation state and previous oxidation/reduction pretreatments on the activity of sulfate-zirconia catalysts for isomerization of n-butane was performed using crystalline and amorphous zirconia supports. Different sulfation methods were used for the preparation of bulk and supported SO42−-ZrO2 with monoclinic, tetragonal and tetragonal+monoclinic structures. Activity was important only for the samples that contained tetragonal crystals. The catalysts prepared from pure monoclinic zirconia showed negligible activity. SO42−-ZrO2 catalysts prepared by sulfation of crystalline zirconia displayed sites with lower acidity and cracking activity than those sulfated in the amorphous state. Prereduction of the zirconia samples with H2 was found to greatly increase the catalytic activity, and a maximum rate was found at a reduction temperature of 550–600 °C, coinciding with a TPR peak supposedly associated with the removal of lattice oxygen and the creation of lattice defects. A weaker dependence of catalytic activity on the density or type of surface OH groups on zirconia (before sulfation) was found in this work. A model of active site generation was constructed in order to stress the dependence on the crystal structure and crystal defects. Current and previous results suggest that tetragonal structure in active SO42−-ZrO2 is a consequence of the stabilization of anionic vacancies in zirconia. Anionic vacancies are in turn supposed to be related to the catalytic activity for n-butane isomerization through the stabilization of electrons from ionized intermediates.
Fil: Vera, Carlos Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina
Fil: Pieck, Carlos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina
Fil: Shimizu, Kiyoyuki. National Institute for Resources and Environment (NIRE) (AIST, MITI); Japón
Fil: Parera, Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina - Materia
-
Sulfate Zirconia
Crystalline Zirconia
N-Butane Isomerization
Tetragonal Structure
Oxygen Vacancy - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/40208
Ver los metadatos del registro completo
id |
CONICETDig_98928e4f7fc14f8b55ad35777ec90d8d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/40208 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Tetragonal structure, anionic vacancies and catalytic activity of SO42−-ZrO2 catalysts for n-butane isomerizationVera, Carlos RomanPieck, Carlos LuisShimizu, KiyoyukiParera, JoseSulfate ZirconiaCrystalline ZirconiaN-Butane IsomerizationTetragonal StructureOxygen Vacancyhttps://purl.org/becyt/ford/2.7https://purl.org/becyt/ford/2Abstract An assessment of the influence of the crystal structure, surface hydroxylation state and previous oxidation/reduction pretreatments on the activity of sulfate-zirconia catalysts for isomerization of n-butane was performed using crystalline and amorphous zirconia supports. Different sulfation methods were used for the preparation of bulk and supported SO42−-ZrO2 with monoclinic, tetragonal and tetragonal+monoclinic structures. Activity was important only for the samples that contained tetragonal crystals. The catalysts prepared from pure monoclinic zirconia showed negligible activity. SO42−-ZrO2 catalysts prepared by sulfation of crystalline zirconia displayed sites with lower acidity and cracking activity than those sulfated in the amorphous state. Prereduction of the zirconia samples with H2 was found to greatly increase the catalytic activity, and a maximum rate was found at a reduction temperature of 550–600 °C, coinciding with a TPR peak supposedly associated with the removal of lattice oxygen and the creation of lattice defects. A weaker dependence of catalytic activity on the density or type of surface OH groups on zirconia (before sulfation) was found in this work. A model of active site generation was constructed in order to stress the dependence on the crystal structure and crystal defects. Current and previous results suggest that tetragonal structure in active SO42−-ZrO2 is a consequence of the stabilization of anionic vacancies in zirconia. Anionic vacancies are in turn supposed to be related to the catalytic activity for n-butane isomerization through the stabilization of electrons from ionized intermediates.Fil: Vera, Carlos Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaFil: Pieck, Carlos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaFil: Shimizu, Kiyoyuki. National Institute for Resources and Environment (NIRE) (AIST, MITI); JapónFil: Parera, Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaElsevier Science2002-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/40208Vera, Carlos Roman; Pieck, Carlos Luis; Shimizu, Kiyoyuki; Parera, Jose; Tetragonal structure, anionic vacancies and catalytic activity of SO42−-ZrO2 catalysts for n-butane isomerization; Elsevier Science; Applied Catalysis A: General; 230; 1-2; 12-2002; 137-1510926-860XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/S0926-860X(01)01002-Xinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926860X0101002Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:50Zoai:ri.conicet.gov.ar:11336/40208instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:50.296CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Tetragonal structure, anionic vacancies and catalytic activity of SO42−-ZrO2 catalysts for n-butane isomerization |
title |
Tetragonal structure, anionic vacancies and catalytic activity of SO42−-ZrO2 catalysts for n-butane isomerization |
spellingShingle |
Tetragonal structure, anionic vacancies and catalytic activity of SO42−-ZrO2 catalysts for n-butane isomerization Vera, Carlos Roman Sulfate Zirconia Crystalline Zirconia N-Butane Isomerization Tetragonal Structure Oxygen Vacancy |
title_short |
Tetragonal structure, anionic vacancies and catalytic activity of SO42−-ZrO2 catalysts for n-butane isomerization |
title_full |
Tetragonal structure, anionic vacancies and catalytic activity of SO42−-ZrO2 catalysts for n-butane isomerization |
title_fullStr |
Tetragonal structure, anionic vacancies and catalytic activity of SO42−-ZrO2 catalysts for n-butane isomerization |
title_full_unstemmed |
Tetragonal structure, anionic vacancies and catalytic activity of SO42−-ZrO2 catalysts for n-butane isomerization |
title_sort |
Tetragonal structure, anionic vacancies and catalytic activity of SO42−-ZrO2 catalysts for n-butane isomerization |
dc.creator.none.fl_str_mv |
Vera, Carlos Roman Pieck, Carlos Luis Shimizu, Kiyoyuki Parera, Jose |
author |
Vera, Carlos Roman |
author_facet |
Vera, Carlos Roman Pieck, Carlos Luis Shimizu, Kiyoyuki Parera, Jose |
author_role |
author |
author2 |
Pieck, Carlos Luis Shimizu, Kiyoyuki Parera, Jose |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Sulfate Zirconia Crystalline Zirconia N-Butane Isomerization Tetragonal Structure Oxygen Vacancy |
topic |
Sulfate Zirconia Crystalline Zirconia N-Butane Isomerization Tetragonal Structure Oxygen Vacancy |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.7 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Abstract An assessment of the influence of the crystal structure, surface hydroxylation state and previous oxidation/reduction pretreatments on the activity of sulfate-zirconia catalysts for isomerization of n-butane was performed using crystalline and amorphous zirconia supports. Different sulfation methods were used for the preparation of bulk and supported SO42−-ZrO2 with monoclinic, tetragonal and tetragonal+monoclinic structures. Activity was important only for the samples that contained tetragonal crystals. The catalysts prepared from pure monoclinic zirconia showed negligible activity. SO42−-ZrO2 catalysts prepared by sulfation of crystalline zirconia displayed sites with lower acidity and cracking activity than those sulfated in the amorphous state. Prereduction of the zirconia samples with H2 was found to greatly increase the catalytic activity, and a maximum rate was found at a reduction temperature of 550–600 °C, coinciding with a TPR peak supposedly associated with the removal of lattice oxygen and the creation of lattice defects. A weaker dependence of catalytic activity on the density or type of surface OH groups on zirconia (before sulfation) was found in this work. A model of active site generation was constructed in order to stress the dependence on the crystal structure and crystal defects. Current and previous results suggest that tetragonal structure in active SO42−-ZrO2 is a consequence of the stabilization of anionic vacancies in zirconia. Anionic vacancies are in turn supposed to be related to the catalytic activity for n-butane isomerization through the stabilization of electrons from ionized intermediates. Fil: Vera, Carlos Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina Fil: Pieck, Carlos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina Fil: Shimizu, Kiyoyuki. National Institute for Resources and Environment (NIRE) (AIST, MITI); Japón Fil: Parera, Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina |
description |
Abstract An assessment of the influence of the crystal structure, surface hydroxylation state and previous oxidation/reduction pretreatments on the activity of sulfate-zirconia catalysts for isomerization of n-butane was performed using crystalline and amorphous zirconia supports. Different sulfation methods were used for the preparation of bulk and supported SO42−-ZrO2 with monoclinic, tetragonal and tetragonal+monoclinic structures. Activity was important only for the samples that contained tetragonal crystals. The catalysts prepared from pure monoclinic zirconia showed negligible activity. SO42−-ZrO2 catalysts prepared by sulfation of crystalline zirconia displayed sites with lower acidity and cracking activity than those sulfated in the amorphous state. Prereduction of the zirconia samples with H2 was found to greatly increase the catalytic activity, and a maximum rate was found at a reduction temperature of 550–600 °C, coinciding with a TPR peak supposedly associated with the removal of lattice oxygen and the creation of lattice defects. A weaker dependence of catalytic activity on the density or type of surface OH groups on zirconia (before sulfation) was found in this work. A model of active site generation was constructed in order to stress the dependence on the crystal structure and crystal defects. Current and previous results suggest that tetragonal structure in active SO42−-ZrO2 is a consequence of the stabilization of anionic vacancies in zirconia. Anionic vacancies are in turn supposed to be related to the catalytic activity for n-butane isomerization through the stabilization of electrons from ionized intermediates. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/40208 Vera, Carlos Roman; Pieck, Carlos Luis; Shimizu, Kiyoyuki; Parera, Jose; Tetragonal structure, anionic vacancies and catalytic activity of SO42−-ZrO2 catalysts for n-butane isomerization; Elsevier Science; Applied Catalysis A: General; 230; 1-2; 12-2002; 137-151 0926-860X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/40208 |
identifier_str_mv |
Vera, Carlos Roman; Pieck, Carlos Luis; Shimizu, Kiyoyuki; Parera, Jose; Tetragonal structure, anionic vacancies and catalytic activity of SO42−-ZrO2 catalysts for n-butane isomerization; Elsevier Science; Applied Catalysis A: General; 230; 1-2; 12-2002; 137-151 0926-860X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/S0926-860X(01)01002-X info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926860X0101002X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270134084829184 |
score |
13.13397 |