Identification of Physical Activity Type in People with Diabetes: A Spectrogram-based Approach
- Autores
- Saavedra, Marcos David; Inthamoussou, Fernando Ariel; Fushimi, Emilia; Garelli, Fabricio
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Individuals with Type 1 Diabetes (T1D) require close glucose monitoringto prevent both short- and long-term complications. Physical activity (PA) is a significantsource of variability in metabolic dynamics, leading to glycemic fluctuations that depend onthe type, intensity, and duration of the exercise. Accurately monitoring and classifying thetype of PA is crucial for optimizing glycemic control and minimizing the risk of hypoglycemia.Methods: This study utilizes the largest clinical trial of PA in people with T1D to date,the Type 1 Diabetes and Exercise Initiative (T1DEXI), which included both structured andunstructured PA sessions, to develop an online classification approach for identifying thetype of PA (aerobic, interval, resistance). A computationally efficient Convolutional NeuralNetwork (CNN) was trained on time-frequency representations (spectrograms) of step countand heart rate signals, readily available from wearable devices, from the structured PAsessions of the T1DEXI dataset. The proposed methodology presents an ad-hoc processfor designing the spectrograms based on the CNN architecture to optimize the classifier’sperformance.Results: The CNN-based classification approach was implemented using spectrogramsof 5 and 30-minute signals, resulting in two classifiers that achieve high classification accuracywhen evaluated on the structured PA sessions. The 5-minute classifier was then applied tounstructured PA sessions, where the predicted distribution of glucose changes for the activitytypes was consistent with clinical evidence.Conclusion: These results demonstrate the potential of the proposed approach for itsintegration into decision support systems or automated insulin delivery systems, enablingimproved glucose management during exercise in T1D.
Fil: Saavedra, Marcos David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina
Fil: Inthamoussou, Fernando Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina
Fil: Fushimi, Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina
Fil: Garelli, Fabricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina - Materia
-
Physical Activity
Classification
Convolutional Neural Network
Spectrogram - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/276169
Ver los metadatos del registro completo
| id |
CONICETDig_96b972f53bfb8e6e1d31fb79246f9e12 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/276169 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Identification of Physical Activity Type in People with Diabetes: A Spectrogram-based ApproachSaavedra, Marcos DavidInthamoussou, Fernando ArielFushimi, EmiliaGarelli, FabricioPhysical ActivityClassificationConvolutional Neural NetworkSpectrogramhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Background: Individuals with Type 1 Diabetes (T1D) require close glucose monitoringto prevent both short- and long-term complications. Physical activity (PA) is a significantsource of variability in metabolic dynamics, leading to glycemic fluctuations that depend onthe type, intensity, and duration of the exercise. Accurately monitoring and classifying thetype of PA is crucial for optimizing glycemic control and minimizing the risk of hypoglycemia.Methods: This study utilizes the largest clinical trial of PA in people with T1D to date,the Type 1 Diabetes and Exercise Initiative (T1DEXI), which included both structured andunstructured PA sessions, to develop an online classification approach for identifying thetype of PA (aerobic, interval, resistance). A computationally efficient Convolutional NeuralNetwork (CNN) was trained on time-frequency representations (spectrograms) of step countand heart rate signals, readily available from wearable devices, from the structured PAsessions of the T1DEXI dataset. The proposed methodology presents an ad-hoc processfor designing the spectrograms based on the CNN architecture to optimize the classifier’sperformance.Results: The CNN-based classification approach was implemented using spectrogramsof 5 and 30-minute signals, resulting in two classifiers that achieve high classification accuracywhen evaluated on the structured PA sessions. The 5-minute classifier was then applied tounstructured PA sessions, where the predicted distribution of glucose changes for the activitytypes was consistent with clinical evidence.Conclusion: These results demonstrate the potential of the proposed approach for itsintegration into decision support systems or automated insulin delivery systems, enablingimproved glucose management during exercise in T1D.Fil: Saavedra, Marcos David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaFil: Inthamoussou, Fernando Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaFil: Fushimi, Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaFil: Garelli, Fabricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaLiebert, Mary Ann2025-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/276169Saavedra, Marcos David; Inthamoussou, Fernando Ariel; Fushimi, Emilia; Garelli, Fabricio; Identification of Physical Activity Type in People with Diabetes: A Spectrogram-based Approach; Liebert, Mary Ann; Diabetes Technology and Obesity Medicine; 1; 1; 7-2025; 361-3732998-6702CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1177/29941520251358842info:eu-repo/semantics/altIdentifier/url/https://www.liebertpub.com/doi/10.1177/29941520251358842info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-03T09:01:15Zoai:ri.conicet.gov.ar:11336/276169instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-03 09:01:16.074CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Identification of Physical Activity Type in People with Diabetes: A Spectrogram-based Approach |
| title |
Identification of Physical Activity Type in People with Diabetes: A Spectrogram-based Approach |
| spellingShingle |
Identification of Physical Activity Type in People with Diabetes: A Spectrogram-based Approach Saavedra, Marcos David Physical Activity Classification Convolutional Neural Network Spectrogram |
| title_short |
Identification of Physical Activity Type in People with Diabetes: A Spectrogram-based Approach |
| title_full |
Identification of Physical Activity Type in People with Diabetes: A Spectrogram-based Approach |
| title_fullStr |
Identification of Physical Activity Type in People with Diabetes: A Spectrogram-based Approach |
| title_full_unstemmed |
Identification of Physical Activity Type in People with Diabetes: A Spectrogram-based Approach |
| title_sort |
Identification of Physical Activity Type in People with Diabetes: A Spectrogram-based Approach |
| dc.creator.none.fl_str_mv |
Saavedra, Marcos David Inthamoussou, Fernando Ariel Fushimi, Emilia Garelli, Fabricio |
| author |
Saavedra, Marcos David |
| author_facet |
Saavedra, Marcos David Inthamoussou, Fernando Ariel Fushimi, Emilia Garelli, Fabricio |
| author_role |
author |
| author2 |
Inthamoussou, Fernando Ariel Fushimi, Emilia Garelli, Fabricio |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Physical Activity Classification Convolutional Neural Network Spectrogram |
| topic |
Physical Activity Classification Convolutional Neural Network Spectrogram |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Background: Individuals with Type 1 Diabetes (T1D) require close glucose monitoringto prevent both short- and long-term complications. Physical activity (PA) is a significantsource of variability in metabolic dynamics, leading to glycemic fluctuations that depend onthe type, intensity, and duration of the exercise. Accurately monitoring and classifying thetype of PA is crucial for optimizing glycemic control and minimizing the risk of hypoglycemia.Methods: This study utilizes the largest clinical trial of PA in people with T1D to date,the Type 1 Diabetes and Exercise Initiative (T1DEXI), which included both structured andunstructured PA sessions, to develop an online classification approach for identifying thetype of PA (aerobic, interval, resistance). A computationally efficient Convolutional NeuralNetwork (CNN) was trained on time-frequency representations (spectrograms) of step countand heart rate signals, readily available from wearable devices, from the structured PAsessions of the T1DEXI dataset. The proposed methodology presents an ad-hoc processfor designing the spectrograms based on the CNN architecture to optimize the classifier’sperformance.Results: The CNN-based classification approach was implemented using spectrogramsof 5 and 30-minute signals, resulting in two classifiers that achieve high classification accuracywhen evaluated on the structured PA sessions. The 5-minute classifier was then applied tounstructured PA sessions, where the predicted distribution of glucose changes for the activitytypes was consistent with clinical evidence.Conclusion: These results demonstrate the potential of the proposed approach for itsintegration into decision support systems or automated insulin delivery systems, enablingimproved glucose management during exercise in T1D. Fil: Saavedra, Marcos David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina Fil: Inthamoussou, Fernando Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina Fil: Fushimi, Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina Fil: Garelli, Fabricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina |
| description |
Background: Individuals with Type 1 Diabetes (T1D) require close glucose monitoringto prevent both short- and long-term complications. Physical activity (PA) is a significantsource of variability in metabolic dynamics, leading to glycemic fluctuations that depend onthe type, intensity, and duration of the exercise. Accurately monitoring and classifying thetype of PA is crucial for optimizing glycemic control and minimizing the risk of hypoglycemia.Methods: This study utilizes the largest clinical trial of PA in people with T1D to date,the Type 1 Diabetes and Exercise Initiative (T1DEXI), which included both structured andunstructured PA sessions, to develop an online classification approach for identifying thetype of PA (aerobic, interval, resistance). A computationally efficient Convolutional NeuralNetwork (CNN) was trained on time-frequency representations (spectrograms) of step countand heart rate signals, readily available from wearable devices, from the structured PAsessions of the T1DEXI dataset. The proposed methodology presents an ad-hoc processfor designing the spectrograms based on the CNN architecture to optimize the classifier’sperformance.Results: The CNN-based classification approach was implemented using spectrogramsof 5 and 30-minute signals, resulting in two classifiers that achieve high classification accuracywhen evaluated on the structured PA sessions. The 5-minute classifier was then applied tounstructured PA sessions, where the predicted distribution of glucose changes for the activitytypes was consistent with clinical evidence.Conclusion: These results demonstrate the potential of the proposed approach for itsintegration into decision support systems or automated insulin delivery systems, enablingimproved glucose management during exercise in T1D. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/276169 Saavedra, Marcos David; Inthamoussou, Fernando Ariel; Fushimi, Emilia; Garelli, Fabricio; Identification of Physical Activity Type in People with Diabetes: A Spectrogram-based Approach; Liebert, Mary Ann; Diabetes Technology and Obesity Medicine; 1; 1; 7-2025; 361-373 2998-6702 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/276169 |
| identifier_str_mv |
Saavedra, Marcos David; Inthamoussou, Fernando Ariel; Fushimi, Emilia; Garelli, Fabricio; Identification of Physical Activity Type in People with Diabetes: A Spectrogram-based Approach; Liebert, Mary Ann; Diabetes Technology and Obesity Medicine; 1; 1; 7-2025; 361-373 2998-6702 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1177/29941520251358842 info:eu-repo/semantics/altIdentifier/url/https://www.liebertpub.com/doi/10.1177/29941520251358842 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Liebert, Mary Ann |
| publisher.none.fl_str_mv |
Liebert, Mary Ann |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1850505192410185728 |
| score |
13.214268 |