Thoracic aorta calcium detection and quantification using convolutional neural networks in a large cohort of intermediate-risk patients
- Autores
- Guilenea, Federico Nicolás; Casciaro, Mariano Ezequiel; Pascaner, Ariel Fernando; Soulat, Gilles; Mousseaux, Elie; Craiem, Damian
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Arterial calcification is an independent predictor of cardiovascular disease (CVD) events whereas thoracic aorta calcium (TAC) detection might anticipate extracoronary outcomes. In this work, we trained six convolutional neural networks (CNNs) to detect aortic calcifications and to automate the TAC score assessment in intermediate CVD risk patients. Cardiac computed tomography images from 1415 patients were analyzed together with their aortic geometry previously assessed. Orthogonal patches centered in each aortic candidate lesion were reconstructed and a dataset with 19,790 images (61% positives) was built. Three single-input 2D CNNs were trained using axial, coronal and sagittal patches together with two multi-input 2.5D CNNs combining the orthogonal patches and identifying their best regional combination (BRC) in terms of lesion location. Aortic calcifications were concentrated in the descending (66%) and aortic arch (26%) portions. The BRC of axial patches to detect ascending or aortic arch lesions and sagittal images for the descending portion had the best performance: 0.954 F1-Score, 98.4% sensitivity, 87% of the subjects correctly classified in their TAC category and an average false positive TAC score per patient of 30. A CNN that combined axial and sagittal patches depending on the candidate aortic location ensured an accurate TAC score prediction.
Fil: Guilenea, Federico Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina
Fil: Casciaro, Mariano Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina
Fil: Pascaner, Ariel Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina
Fil: Soulat, Gilles. Hopital Europeen Georges Pompidou; Francia
Fil: Mousseaux, Elie. Hopital Europeen Georges Pompidou; Francia
Fil: Craiem, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina - Materia
-
ARTERY CALCIUM
CONVOLUTIONAL NEURAL NETWORK
THORACIC AORTA CALCIFICATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/212659
Ver los metadatos del registro completo
id |
CONICETDig_1bc97d20ea0c29ce456ab4a3f015bee1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/212659 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Thoracic aorta calcium detection and quantification using convolutional neural networks in a large cohort of intermediate-risk patientsGuilenea, Federico NicolásCasciaro, Mariano EzequielPascaner, Ariel FernandoSoulat, GillesMousseaux, ElieCraiem, DamianARTERY CALCIUMCONVOLUTIONAL NEURAL NETWORKTHORACIC AORTA CALCIFICATIONhttps://purl.org/becyt/ford/2.6https://purl.org/becyt/ford/2Arterial calcification is an independent predictor of cardiovascular disease (CVD) events whereas thoracic aorta calcium (TAC) detection might anticipate extracoronary outcomes. In this work, we trained six convolutional neural networks (CNNs) to detect aortic calcifications and to automate the TAC score assessment in intermediate CVD risk patients. Cardiac computed tomography images from 1415 patients were analyzed together with their aortic geometry previously assessed. Orthogonal patches centered in each aortic candidate lesion were reconstructed and a dataset with 19,790 images (61% positives) was built. Three single-input 2D CNNs were trained using axial, coronal and sagittal patches together with two multi-input 2.5D CNNs combining the orthogonal patches and identifying their best regional combination (BRC) in terms of lesion location. Aortic calcifications were concentrated in the descending (66%) and aortic arch (26%) portions. The BRC of axial patches to detect ascending or aortic arch lesions and sagittal images for the descending portion had the best performance: 0.954 F1-Score, 98.4% sensitivity, 87% of the subjects correctly classified in their TAC category and an average false positive TAC score per patient of 30. A CNN that combined axial and sagittal patches depending on the candidate aortic location ensured an accurate TAC score prediction.Fil: Guilenea, Federico Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Casciaro, Mariano Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Pascaner, Ariel Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Soulat, Gilles. Hopital Europeen Georges Pompidou; FranciaFil: Mousseaux, Elie. Hopital Europeen Georges Pompidou; FranciaFil: Craiem, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaMultidisciplinary Digital Publishing Institute2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/212659Guilenea, Federico Nicolás; Casciaro, Mariano Ezequiel; Pascaner, Ariel Fernando; Soulat, Gilles; Mousseaux, Elie; et al.; Thoracic aorta calcium detection and quantification using convolutional neural networks in a large cohort of intermediate-risk patients; Multidisciplinary Digital Publishing Institute; Tomography; 7; 4; 12-2021; 636-6492379-139XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2379-139X/7/4/54info:eu-repo/semantics/altIdentifier/doi/10.3390/tomography7040054info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:23:22Zoai:ri.conicet.gov.ar:11336/212659instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:23:23.048CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Thoracic aorta calcium detection and quantification using convolutional neural networks in a large cohort of intermediate-risk patients |
title |
Thoracic aorta calcium detection and quantification using convolutional neural networks in a large cohort of intermediate-risk patients |
spellingShingle |
Thoracic aorta calcium detection and quantification using convolutional neural networks in a large cohort of intermediate-risk patients Guilenea, Federico Nicolás ARTERY CALCIUM CONVOLUTIONAL NEURAL NETWORK THORACIC AORTA CALCIFICATION |
title_short |
Thoracic aorta calcium detection and quantification using convolutional neural networks in a large cohort of intermediate-risk patients |
title_full |
Thoracic aorta calcium detection and quantification using convolutional neural networks in a large cohort of intermediate-risk patients |
title_fullStr |
Thoracic aorta calcium detection and quantification using convolutional neural networks in a large cohort of intermediate-risk patients |
title_full_unstemmed |
Thoracic aorta calcium detection and quantification using convolutional neural networks in a large cohort of intermediate-risk patients |
title_sort |
Thoracic aorta calcium detection and quantification using convolutional neural networks in a large cohort of intermediate-risk patients |
dc.creator.none.fl_str_mv |
Guilenea, Federico Nicolás Casciaro, Mariano Ezequiel Pascaner, Ariel Fernando Soulat, Gilles Mousseaux, Elie Craiem, Damian |
author |
Guilenea, Federico Nicolás |
author_facet |
Guilenea, Federico Nicolás Casciaro, Mariano Ezequiel Pascaner, Ariel Fernando Soulat, Gilles Mousseaux, Elie Craiem, Damian |
author_role |
author |
author2 |
Casciaro, Mariano Ezequiel Pascaner, Ariel Fernando Soulat, Gilles Mousseaux, Elie Craiem, Damian |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
ARTERY CALCIUM CONVOLUTIONAL NEURAL NETWORK THORACIC AORTA CALCIFICATION |
topic |
ARTERY CALCIUM CONVOLUTIONAL NEURAL NETWORK THORACIC AORTA CALCIFICATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.6 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Arterial calcification is an independent predictor of cardiovascular disease (CVD) events whereas thoracic aorta calcium (TAC) detection might anticipate extracoronary outcomes. In this work, we trained six convolutional neural networks (CNNs) to detect aortic calcifications and to automate the TAC score assessment in intermediate CVD risk patients. Cardiac computed tomography images from 1415 patients were analyzed together with their aortic geometry previously assessed. Orthogonal patches centered in each aortic candidate lesion were reconstructed and a dataset with 19,790 images (61% positives) was built. Three single-input 2D CNNs were trained using axial, coronal and sagittal patches together with two multi-input 2.5D CNNs combining the orthogonal patches and identifying their best regional combination (BRC) in terms of lesion location. Aortic calcifications were concentrated in the descending (66%) and aortic arch (26%) portions. The BRC of axial patches to detect ascending or aortic arch lesions and sagittal images for the descending portion had the best performance: 0.954 F1-Score, 98.4% sensitivity, 87% of the subjects correctly classified in their TAC category and an average false positive TAC score per patient of 30. A CNN that combined axial and sagittal patches depending on the candidate aortic location ensured an accurate TAC score prediction. Fil: Guilenea, Federico Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina Fil: Casciaro, Mariano Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina Fil: Pascaner, Ariel Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina Fil: Soulat, Gilles. Hopital Europeen Georges Pompidou; Francia Fil: Mousseaux, Elie. Hopital Europeen Georges Pompidou; Francia Fil: Craiem, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina |
description |
Arterial calcification is an independent predictor of cardiovascular disease (CVD) events whereas thoracic aorta calcium (TAC) detection might anticipate extracoronary outcomes. In this work, we trained six convolutional neural networks (CNNs) to detect aortic calcifications and to automate the TAC score assessment in intermediate CVD risk patients. Cardiac computed tomography images from 1415 patients were analyzed together with their aortic geometry previously assessed. Orthogonal patches centered in each aortic candidate lesion were reconstructed and a dataset with 19,790 images (61% positives) was built. Three single-input 2D CNNs were trained using axial, coronal and sagittal patches together with two multi-input 2.5D CNNs combining the orthogonal patches and identifying their best regional combination (BRC) in terms of lesion location. Aortic calcifications were concentrated in the descending (66%) and aortic arch (26%) portions. The BRC of axial patches to detect ascending or aortic arch lesions and sagittal images for the descending portion had the best performance: 0.954 F1-Score, 98.4% sensitivity, 87% of the subjects correctly classified in their TAC category and an average false positive TAC score per patient of 30. A CNN that combined axial and sagittal patches depending on the candidate aortic location ensured an accurate TAC score prediction. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/212659 Guilenea, Federico Nicolás; Casciaro, Mariano Ezequiel; Pascaner, Ariel Fernando; Soulat, Gilles; Mousseaux, Elie; et al.; Thoracic aorta calcium detection and quantification using convolutional neural networks in a large cohort of intermediate-risk patients; Multidisciplinary Digital Publishing Institute; Tomography; 7; 4; 12-2021; 636-649 2379-139X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/212659 |
identifier_str_mv |
Guilenea, Federico Nicolás; Casciaro, Mariano Ezequiel; Pascaner, Ariel Fernando; Soulat, Gilles; Mousseaux, Elie; et al.; Thoracic aorta calcium detection and quantification using convolutional neural networks in a large cohort of intermediate-risk patients; Multidisciplinary Digital Publishing Institute; Tomography; 7; 4; 12-2021; 636-649 2379-139X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2379-139X/7/4/54 info:eu-repo/semantics/altIdentifier/doi/10.3390/tomography7040054 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083380642316288 |
score |
13.22299 |