Zwitterionic Silane Copolymer for Ultra-Stable and Bright Biomolecular Probes Based on Fluorescent Quantum Dot Nanoclusters
- Autores
- Dembele, Fatimata; Tasso, Mariana Patricia; Trapiella Alfonso, Laura; Xu, Xiangzhen; Hanafi, Mohamed; Lequeux, Nicolas; Pons, Thomas
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fluorescent semiconductor quantum dots (QDs) exhibit several unique properties that make them suitable candidates for biomolecular sensing, including high brightness, photostability, broad excitation, and narrow emission spectra. Assembling these QDs into robust and functionalizable nanosized clusters (QD-NSCs) can provide fluorescent probes that are several orders of magnitude brighter than individual QDs, thus allowing an even greater sensitivity of detection with simplified instrumentation. However, the formation of compact, antifouling, functionalizable, and stable QD-NSCs remains a challenging task, especially for a use at ultralow concentrations for single-molecule detection. Here, we describe the development of fluorescent QD-NSCs envisioned as a tool for fast and sensitive biomolecular recognition. First, QDs were assembled into very compact 100-150 nm diameter spherical aggregates; the final QD-NSCs were obtained by growing a cross-linked silica shell around these aggregates. Hydrolytic stability in several concentration and pH conditions is a key requirement for a potential and efficient single-molecule detection tool. However, the hydrolysis of Si-O-Si bonds leads to desorption of monosilane-based surface groups at very low silica concentrations or in a slightly basic medium. Thus, we designed a novel multidentate copolymer composed of multiple silane as well as zwitterionic monomers. Coating silica beads with this multidentate copolymer provided a robust surface chemistry that was demonstrated to be stable against hydrolysis, even at low concentrations. Copolymer-coated silica beads also showed low fouling properties and high colloidal stability in saline solutions. Furthermore, incorporation of additional azido-monomers enabled easy functionalization of QD-NSCs using copper-free bio-orthogonal cyclooctyne-azide click chemistry, as demonstrated by a biotin-streptavidin affinity test.
Fil: Dembele, Fatimata. Universite Pierre et Marie Curie; Francia
Fil: Tasso, Mariana Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Trapiella Alfonso, Laura. Universite Pierre et Marie Curie; Francia
Fil: Xu, Xiangzhen. Universite Pierre et Marie Curie; Francia
Fil: Hanafi, Mohamed. Universite Pierre et Marie Curie; Francia
Fil: Lequeux, Nicolas. Universite Pierre et Marie Curie; Francia
Fil: Pons, Thomas. Universite Pierre et Marie Curie; Francia - Materia
-
Biodetection
Nanoclusters
Quantum Dots
Silica
Zwitterionic Copolymers - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/64105
Ver los metadatos del registro completo
id |
CONICETDig_95e14c8d9dd578e8c578b56f103d3edb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/64105 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Zwitterionic Silane Copolymer for Ultra-Stable and Bright Biomolecular Probes Based on Fluorescent Quantum Dot NanoclustersDembele, FatimataTasso, Mariana PatriciaTrapiella Alfonso, LauraXu, XiangzhenHanafi, MohamedLequeux, NicolasPons, ThomasBiodetectionNanoclustersQuantum DotsSilicaZwitterionic Copolymershttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1https://purl.org/becyt/ford/3.4https://purl.org/becyt/ford/3Fluorescent semiconductor quantum dots (QDs) exhibit several unique properties that make them suitable candidates for biomolecular sensing, including high brightness, photostability, broad excitation, and narrow emission spectra. Assembling these QDs into robust and functionalizable nanosized clusters (QD-NSCs) can provide fluorescent probes that are several orders of magnitude brighter than individual QDs, thus allowing an even greater sensitivity of detection with simplified instrumentation. However, the formation of compact, antifouling, functionalizable, and stable QD-NSCs remains a challenging task, especially for a use at ultralow concentrations for single-molecule detection. Here, we describe the development of fluorescent QD-NSCs envisioned as a tool for fast and sensitive biomolecular recognition. First, QDs were assembled into very compact 100-150 nm diameter spherical aggregates; the final QD-NSCs were obtained by growing a cross-linked silica shell around these aggregates. Hydrolytic stability in several concentration and pH conditions is a key requirement for a potential and efficient single-molecule detection tool. However, the hydrolysis of Si-O-Si bonds leads to desorption of monosilane-based surface groups at very low silica concentrations or in a slightly basic medium. Thus, we designed a novel multidentate copolymer composed of multiple silane as well as zwitterionic monomers. Coating silica beads with this multidentate copolymer provided a robust surface chemistry that was demonstrated to be stable against hydrolysis, even at low concentrations. Copolymer-coated silica beads also showed low fouling properties and high colloidal stability in saline solutions. Furthermore, incorporation of additional azido-monomers enabled easy functionalization of QD-NSCs using copper-free bio-orthogonal cyclooctyne-azide click chemistry, as demonstrated by a biotin-streptavidin affinity test.Fil: Dembele, Fatimata. Universite Pierre et Marie Curie; FranciaFil: Tasso, Mariana Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Trapiella Alfonso, Laura. Universite Pierre et Marie Curie; FranciaFil: Xu, Xiangzhen. Universite Pierre et Marie Curie; FranciaFil: Hanafi, Mohamed. Universite Pierre et Marie Curie; FranciaFil: Lequeux, Nicolas. Universite Pierre et Marie Curie; FranciaFil: Pons, Thomas. Universite Pierre et Marie Curie; FranciaAmerican Chemical Society2017-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/64105Dembele, Fatimata; Tasso, Mariana Patricia; Trapiella Alfonso, Laura; Xu, Xiangzhen; Hanafi, Mohamed; et al.; Zwitterionic Silane Copolymer for Ultra-Stable and Bright Biomolecular Probes Based on Fluorescent Quantum Dot Nanoclusters; American Chemical Society; ACS Applied Materials & Interfaces; 9; 21; 5-2017; 18161-181691944-8244CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acsami.7b01615info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsami.7b01615info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:57Zoai:ri.conicet.gov.ar:11336/64105instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:58.229CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Zwitterionic Silane Copolymer for Ultra-Stable and Bright Biomolecular Probes Based on Fluorescent Quantum Dot Nanoclusters |
title |
Zwitterionic Silane Copolymer for Ultra-Stable and Bright Biomolecular Probes Based on Fluorescent Quantum Dot Nanoclusters |
spellingShingle |
Zwitterionic Silane Copolymer for Ultra-Stable and Bright Biomolecular Probes Based on Fluorescent Quantum Dot Nanoclusters Dembele, Fatimata Biodetection Nanoclusters Quantum Dots Silica Zwitterionic Copolymers |
title_short |
Zwitterionic Silane Copolymer for Ultra-Stable and Bright Biomolecular Probes Based on Fluorescent Quantum Dot Nanoclusters |
title_full |
Zwitterionic Silane Copolymer for Ultra-Stable and Bright Biomolecular Probes Based on Fluorescent Quantum Dot Nanoclusters |
title_fullStr |
Zwitterionic Silane Copolymer for Ultra-Stable and Bright Biomolecular Probes Based on Fluorescent Quantum Dot Nanoclusters |
title_full_unstemmed |
Zwitterionic Silane Copolymer for Ultra-Stable and Bright Biomolecular Probes Based on Fluorescent Quantum Dot Nanoclusters |
title_sort |
Zwitterionic Silane Copolymer for Ultra-Stable and Bright Biomolecular Probes Based on Fluorescent Quantum Dot Nanoclusters |
dc.creator.none.fl_str_mv |
Dembele, Fatimata Tasso, Mariana Patricia Trapiella Alfonso, Laura Xu, Xiangzhen Hanafi, Mohamed Lequeux, Nicolas Pons, Thomas |
author |
Dembele, Fatimata |
author_facet |
Dembele, Fatimata Tasso, Mariana Patricia Trapiella Alfonso, Laura Xu, Xiangzhen Hanafi, Mohamed Lequeux, Nicolas Pons, Thomas |
author_role |
author |
author2 |
Tasso, Mariana Patricia Trapiella Alfonso, Laura Xu, Xiangzhen Hanafi, Mohamed Lequeux, Nicolas Pons, Thomas |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Biodetection Nanoclusters Quantum Dots Silica Zwitterionic Copolymers |
topic |
Biodetection Nanoclusters Quantum Dots Silica Zwitterionic Copolymers |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/3.4 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Fluorescent semiconductor quantum dots (QDs) exhibit several unique properties that make them suitable candidates for biomolecular sensing, including high brightness, photostability, broad excitation, and narrow emission spectra. Assembling these QDs into robust and functionalizable nanosized clusters (QD-NSCs) can provide fluorescent probes that are several orders of magnitude brighter than individual QDs, thus allowing an even greater sensitivity of detection with simplified instrumentation. However, the formation of compact, antifouling, functionalizable, and stable QD-NSCs remains a challenging task, especially for a use at ultralow concentrations for single-molecule detection. Here, we describe the development of fluorescent QD-NSCs envisioned as a tool for fast and sensitive biomolecular recognition. First, QDs were assembled into very compact 100-150 nm diameter spherical aggregates; the final QD-NSCs were obtained by growing a cross-linked silica shell around these aggregates. Hydrolytic stability in several concentration and pH conditions is a key requirement for a potential and efficient single-molecule detection tool. However, the hydrolysis of Si-O-Si bonds leads to desorption of monosilane-based surface groups at very low silica concentrations or in a slightly basic medium. Thus, we designed a novel multidentate copolymer composed of multiple silane as well as zwitterionic monomers. Coating silica beads with this multidentate copolymer provided a robust surface chemistry that was demonstrated to be stable against hydrolysis, even at low concentrations. Copolymer-coated silica beads also showed low fouling properties and high colloidal stability in saline solutions. Furthermore, incorporation of additional azido-monomers enabled easy functionalization of QD-NSCs using copper-free bio-orthogonal cyclooctyne-azide click chemistry, as demonstrated by a biotin-streptavidin affinity test. Fil: Dembele, Fatimata. Universite Pierre et Marie Curie; Francia Fil: Tasso, Mariana Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Trapiella Alfonso, Laura. Universite Pierre et Marie Curie; Francia Fil: Xu, Xiangzhen. Universite Pierre et Marie Curie; Francia Fil: Hanafi, Mohamed. Universite Pierre et Marie Curie; Francia Fil: Lequeux, Nicolas. Universite Pierre et Marie Curie; Francia Fil: Pons, Thomas. Universite Pierre et Marie Curie; Francia |
description |
Fluorescent semiconductor quantum dots (QDs) exhibit several unique properties that make them suitable candidates for biomolecular sensing, including high brightness, photostability, broad excitation, and narrow emission spectra. Assembling these QDs into robust and functionalizable nanosized clusters (QD-NSCs) can provide fluorescent probes that are several orders of magnitude brighter than individual QDs, thus allowing an even greater sensitivity of detection with simplified instrumentation. However, the formation of compact, antifouling, functionalizable, and stable QD-NSCs remains a challenging task, especially for a use at ultralow concentrations for single-molecule detection. Here, we describe the development of fluorescent QD-NSCs envisioned as a tool for fast and sensitive biomolecular recognition. First, QDs were assembled into very compact 100-150 nm diameter spherical aggregates; the final QD-NSCs were obtained by growing a cross-linked silica shell around these aggregates. Hydrolytic stability in several concentration and pH conditions is a key requirement for a potential and efficient single-molecule detection tool. However, the hydrolysis of Si-O-Si bonds leads to desorption of monosilane-based surface groups at very low silica concentrations or in a slightly basic medium. Thus, we designed a novel multidentate copolymer composed of multiple silane as well as zwitterionic monomers. Coating silica beads with this multidentate copolymer provided a robust surface chemistry that was demonstrated to be stable against hydrolysis, even at low concentrations. Copolymer-coated silica beads also showed low fouling properties and high colloidal stability in saline solutions. Furthermore, incorporation of additional azido-monomers enabled easy functionalization of QD-NSCs using copper-free bio-orthogonal cyclooctyne-azide click chemistry, as demonstrated by a biotin-streptavidin affinity test. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/64105 Dembele, Fatimata; Tasso, Mariana Patricia; Trapiella Alfonso, Laura; Xu, Xiangzhen; Hanafi, Mohamed; et al.; Zwitterionic Silane Copolymer for Ultra-Stable and Bright Biomolecular Probes Based on Fluorescent Quantum Dot Nanoclusters; American Chemical Society; ACS Applied Materials & Interfaces; 9; 21; 5-2017; 18161-18169 1944-8244 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/64105 |
identifier_str_mv |
Dembele, Fatimata; Tasso, Mariana Patricia; Trapiella Alfonso, Laura; Xu, Xiangzhen; Hanafi, Mohamed; et al.; Zwitterionic Silane Copolymer for Ultra-Stable and Bright Biomolecular Probes Based on Fluorescent Quantum Dot Nanoclusters; American Chemical Society; ACS Applied Materials & Interfaces; 9; 21; 5-2017; 18161-18169 1944-8244 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/acsami.7b01615 info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsami.7b01615 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269126590988288 |
score |
13.13397 |