Infilling methods for monthly precipitation records with poor station network density in Subtropical Argentina
- Autores
- Hurtado, Santiago Ignacio; Zaninelli, Pablo Gabriel; Agosta, Eduardo A.; Ricetti, Lorenzo
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Precipitation plays a crucial role from a social and economic perspective in Subtropical Argentina (STAr). Therefore, it renders the need for continuous and reliable precipitation records to develop serious climatological researches. However, precipitation records in this region are frequently inhomogeneous and scarce, which makes it necessary to deal with data filling methods. Choosing the best method to complete precipitation data series relies on rain gauge network density and on the complexity of orography, among other factors. Most comparative-method studies in the literature are focused on dense station networks while, contrastingly, the STAr's station network density is remarkably poor (between 10 and 1000 times lower). The research aims at assessing the performance of several interpolation methods in STAr. In this sense, the performance of a large number of interpolation methods was evaluated for dry and wet seasons, interpolating raw monthly data and their anomalies applied to different time-series subsets. In general, most methods performances improve when applied to anomalies in the seasonal time-series subset. Multiple Linear Regression (MLR) stands out as the method with the best performance for infilling precipitation records for most of the regions regardless of orography or season. Despite the bibliography invokes that kriging interpolation methods are the best ones, in this work the performance of kriging methods was similar to the one of the Inverse Distance Weighted method (IDW) and the Angular Distance Weighted method (ADW, the method used to generate CRU precipitation dataset).
Fil: Hurtado, Santiago Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Zaninelli, Pablo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina
Fil: Agosta, Eduardo A.. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Ricetti, Lorenzo. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina - Materia
-
INTERPOLATION METHODS
MISSING DATA
MONTHLY PRECIPITATION
SCARCE DATA
TIME SERIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/163465
Ver los metadatos del registro completo
id |
CONICETDig_95c7ca4b9957925781c1a3881c150933 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/163465 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Infilling methods for monthly precipitation records with poor station network density in Subtropical ArgentinaHurtado, Santiago IgnacioZaninelli, Pablo GabrielAgosta, Eduardo A.Ricetti, LorenzoINTERPOLATION METHODSMISSING DATAMONTHLY PRECIPITATIONSCARCE DATATIME SERIEShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Precipitation plays a crucial role from a social and economic perspective in Subtropical Argentina (STAr). Therefore, it renders the need for continuous and reliable precipitation records to develop serious climatological researches. However, precipitation records in this region are frequently inhomogeneous and scarce, which makes it necessary to deal with data filling methods. Choosing the best method to complete precipitation data series relies on rain gauge network density and on the complexity of orography, among other factors. Most comparative-method studies in the literature are focused on dense station networks while, contrastingly, the STAr's station network density is remarkably poor (between 10 and 1000 times lower). The research aims at assessing the performance of several interpolation methods in STAr. In this sense, the performance of a large number of interpolation methods was evaluated for dry and wet seasons, interpolating raw monthly data and their anomalies applied to different time-series subsets. In general, most methods performances improve when applied to anomalies in the seasonal time-series subset. Multiple Linear Regression (MLR) stands out as the method with the best performance for infilling precipitation records for most of the regions regardless of orography or season. Despite the bibliography invokes that kriging interpolation methods are the best ones, in this work the performance of kriging methods was similar to the one of the Inverse Distance Weighted method (IDW) and the Angular Distance Weighted method (ADW, the method used to generate CRU precipitation dataset).Fil: Hurtado, Santiago Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Zaninelli, Pablo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; ArgentinaFil: Agosta, Eduardo A.. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Ricetti, Lorenzo. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaElsevier2021-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/163465Hurtado, Santiago Ignacio; Zaninelli, Pablo Gabriel; Agosta, Eduardo A.; Ricetti, Lorenzo; Infilling methods for monthly precipitation records with poor station network density in Subtropical Argentina; Elsevier; Atmospheric Research; 254; 6-2021; 1-340169-8095CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S016980952100034Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.atmosres.2021.105482info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:02Zoai:ri.conicet.gov.ar:11336/163465instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:02.933CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Infilling methods for monthly precipitation records with poor station network density in Subtropical Argentina |
title |
Infilling methods for monthly precipitation records with poor station network density in Subtropical Argentina |
spellingShingle |
Infilling methods for monthly precipitation records with poor station network density in Subtropical Argentina Hurtado, Santiago Ignacio INTERPOLATION METHODS MISSING DATA MONTHLY PRECIPITATION SCARCE DATA TIME SERIES |
title_short |
Infilling methods for monthly precipitation records with poor station network density in Subtropical Argentina |
title_full |
Infilling methods for monthly precipitation records with poor station network density in Subtropical Argentina |
title_fullStr |
Infilling methods for monthly precipitation records with poor station network density in Subtropical Argentina |
title_full_unstemmed |
Infilling methods for monthly precipitation records with poor station network density in Subtropical Argentina |
title_sort |
Infilling methods for monthly precipitation records with poor station network density in Subtropical Argentina |
dc.creator.none.fl_str_mv |
Hurtado, Santiago Ignacio Zaninelli, Pablo Gabriel Agosta, Eduardo A. Ricetti, Lorenzo |
author |
Hurtado, Santiago Ignacio |
author_facet |
Hurtado, Santiago Ignacio Zaninelli, Pablo Gabriel Agosta, Eduardo A. Ricetti, Lorenzo |
author_role |
author |
author2 |
Zaninelli, Pablo Gabriel Agosta, Eduardo A. Ricetti, Lorenzo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
INTERPOLATION METHODS MISSING DATA MONTHLY PRECIPITATION SCARCE DATA TIME SERIES |
topic |
INTERPOLATION METHODS MISSING DATA MONTHLY PRECIPITATION SCARCE DATA TIME SERIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Precipitation plays a crucial role from a social and economic perspective in Subtropical Argentina (STAr). Therefore, it renders the need for continuous and reliable precipitation records to develop serious climatological researches. However, precipitation records in this region are frequently inhomogeneous and scarce, which makes it necessary to deal with data filling methods. Choosing the best method to complete precipitation data series relies on rain gauge network density and on the complexity of orography, among other factors. Most comparative-method studies in the literature are focused on dense station networks while, contrastingly, the STAr's station network density is remarkably poor (between 10 and 1000 times lower). The research aims at assessing the performance of several interpolation methods in STAr. In this sense, the performance of a large number of interpolation methods was evaluated for dry and wet seasons, interpolating raw monthly data and their anomalies applied to different time-series subsets. In general, most methods performances improve when applied to anomalies in the seasonal time-series subset. Multiple Linear Regression (MLR) stands out as the method with the best performance for infilling precipitation records for most of the regions regardless of orography or season. Despite the bibliography invokes that kriging interpolation methods are the best ones, in this work the performance of kriging methods was similar to the one of the Inverse Distance Weighted method (IDW) and the Angular Distance Weighted method (ADW, the method used to generate CRU precipitation dataset). Fil: Hurtado, Santiago Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina Fil: Zaninelli, Pablo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina Fil: Agosta, Eduardo A.. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina Fil: Ricetti, Lorenzo. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina |
description |
Precipitation plays a crucial role from a social and economic perspective in Subtropical Argentina (STAr). Therefore, it renders the need for continuous and reliable precipitation records to develop serious climatological researches. However, precipitation records in this region are frequently inhomogeneous and scarce, which makes it necessary to deal with data filling methods. Choosing the best method to complete precipitation data series relies on rain gauge network density and on the complexity of orography, among other factors. Most comparative-method studies in the literature are focused on dense station networks while, contrastingly, the STAr's station network density is remarkably poor (between 10 and 1000 times lower). The research aims at assessing the performance of several interpolation methods in STAr. In this sense, the performance of a large number of interpolation methods was evaluated for dry and wet seasons, interpolating raw monthly data and their anomalies applied to different time-series subsets. In general, most methods performances improve when applied to anomalies in the seasonal time-series subset. Multiple Linear Regression (MLR) stands out as the method with the best performance for infilling precipitation records for most of the regions regardless of orography or season. Despite the bibliography invokes that kriging interpolation methods are the best ones, in this work the performance of kriging methods was similar to the one of the Inverse Distance Weighted method (IDW) and the Angular Distance Weighted method (ADW, the method used to generate CRU precipitation dataset). |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/163465 Hurtado, Santiago Ignacio; Zaninelli, Pablo Gabriel; Agosta, Eduardo A.; Ricetti, Lorenzo; Infilling methods for monthly precipitation records with poor station network density in Subtropical Argentina; Elsevier; Atmospheric Research; 254; 6-2021; 1-34 0169-8095 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/163465 |
identifier_str_mv |
Hurtado, Santiago Ignacio; Zaninelli, Pablo Gabriel; Agosta, Eduardo A.; Ricetti, Lorenzo; Infilling methods for monthly precipitation records with poor station network density in Subtropical Argentina; Elsevier; Atmospheric Research; 254; 6-2021; 1-34 0169-8095 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S016980952100034X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.atmosres.2021.105482 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269557252685824 |
score |
13.13397 |