A Study of Monthly Precipitation Timeseries from Argentina (Corrientes, Córdoba, Buenos Aires, and Bahía Blanca) for the Period of 1860–2023
- Autores
- Canziani, Pablo Osvaldo; Lakkis, Susan Gabriela; Yuchechen, Adrian Enrique
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This study investigates the long-term variability and extremes of monthly precipitation during 150 years or more at 4 locations in Argentina: Corrientes, Córdoba, Buenos Aires, and Bahía Blanca. Annual and seasonal trends, extreme dry and wet months over the whole period, and the relationships between large-scale climate drivers and monthly rainfall are considered. Results show that, except for Córdoba, the complete anomaly timeseries trend analysis for all other stations yielded null trends over the centennial study period. Considerable month-to-month variability is observed for all locations together with the existence of low-frequency decadal to interdecadal variability, both for monthly precipitation anomalies and for statistically significant excess and deficit months. Linear fits considering oceanic climate indicators as drivers of variability yield significant differences between locations, while not between full records and seasonally sampled. Issues regarding the use of linear analysis to quantify variability, the dispersion along the timeline of record extreme rainy months at each location, together with the evidence of severe daily precipitation events not necessarily coinciding with the ranking of the rainiest months at each location, highlights the challenges of understanding the drivers of variability of both monthly and severe daily precipitation and the need of using extended centennial timeseries whenever possible.
Fil: Canziani, Pablo Osvaldo. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lakkis, Susan Gabriela. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Yuchechen, Adrian Enrique. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
ARGENTINA
LONG-TERM DATA
MONTHLY PRECIPITATION
EXTREME EVENTS
CLIMATE INDICES
TRENDS
LOW-FREQUENCY VARIABILITY
CLIMATE CHANGE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/271250
Ver los metadatos del registro completo
id |
CONICETDig_1d866350f260ac228c27c59868354d91 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/271250 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Study of Monthly Precipitation Timeseries from Argentina (Corrientes, Córdoba, Buenos Aires, and Bahía Blanca) for the Period of 1860–2023Canziani, Pablo OsvaldoLakkis, Susan GabrielaYuchechen, Adrian EnriqueARGENTINALONG-TERM DATAMONTHLY PRECIPITATIONEXTREME EVENTSCLIMATE INDICESTRENDSLOW-FREQUENCY VARIABILITYCLIMATE CHANGEhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1This study investigates the long-term variability and extremes of monthly precipitation during 150 years or more at 4 locations in Argentina: Corrientes, Córdoba, Buenos Aires, and Bahía Blanca. Annual and seasonal trends, extreme dry and wet months over the whole period, and the relationships between large-scale climate drivers and monthly rainfall are considered. Results show that, except for Córdoba, the complete anomaly timeseries trend analysis for all other stations yielded null trends over the centennial study period. Considerable month-to-month variability is observed for all locations together with the existence of low-frequency decadal to interdecadal variability, both for monthly precipitation anomalies and for statistically significant excess and deficit months. Linear fits considering oceanic climate indicators as drivers of variability yield significant differences between locations, while not between full records and seasonally sampled. Issues regarding the use of linear analysis to quantify variability, the dispersion along the timeline of record extreme rainy months at each location, together with the evidence of severe daily precipitation events not necessarily coinciding with the ranking of the rainiest months at each location, highlights the challenges of understanding the drivers of variability of both monthly and severe daily precipitation and the need of using extended centennial timeseries whenever possible.Fil: Canziani, Pablo Osvaldo. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lakkis, Susan Gabriela. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; ArgentinaFil: Yuchechen, Adrian Enrique. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMDPI2025-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/271250Canziani, Pablo Osvaldo; Lakkis, Susan Gabriela; Yuchechen, Adrian Enrique; A Study of Monthly Precipitation Timeseries from Argentina (Corrientes, Córdoba, Buenos Aires, and Bahía Blanca) for the Period of 1860–2023; MDPI; Atmosphere; 16; 8; 7-2025; 1-272073-4433CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4433/16/8/914info:eu-repo/semantics/altIdentifier/doi/10.3390/atmos16080914info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:06:00Zoai:ri.conicet.gov.ar:11336/271250instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:06:00.464CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Study of Monthly Precipitation Timeseries from Argentina (Corrientes, Córdoba, Buenos Aires, and Bahía Blanca) for the Period of 1860–2023 |
title |
A Study of Monthly Precipitation Timeseries from Argentina (Corrientes, Córdoba, Buenos Aires, and Bahía Blanca) for the Period of 1860–2023 |
spellingShingle |
A Study of Monthly Precipitation Timeseries from Argentina (Corrientes, Córdoba, Buenos Aires, and Bahía Blanca) for the Period of 1860–2023 Canziani, Pablo Osvaldo ARGENTINA LONG-TERM DATA MONTHLY PRECIPITATION EXTREME EVENTS CLIMATE INDICES TRENDS LOW-FREQUENCY VARIABILITY CLIMATE CHANGE |
title_short |
A Study of Monthly Precipitation Timeseries from Argentina (Corrientes, Córdoba, Buenos Aires, and Bahía Blanca) for the Period of 1860–2023 |
title_full |
A Study of Monthly Precipitation Timeseries from Argentina (Corrientes, Córdoba, Buenos Aires, and Bahía Blanca) for the Period of 1860–2023 |
title_fullStr |
A Study of Monthly Precipitation Timeseries from Argentina (Corrientes, Córdoba, Buenos Aires, and Bahía Blanca) for the Period of 1860–2023 |
title_full_unstemmed |
A Study of Monthly Precipitation Timeseries from Argentina (Corrientes, Córdoba, Buenos Aires, and Bahía Blanca) for the Period of 1860–2023 |
title_sort |
A Study of Monthly Precipitation Timeseries from Argentina (Corrientes, Córdoba, Buenos Aires, and Bahía Blanca) for the Period of 1860–2023 |
dc.creator.none.fl_str_mv |
Canziani, Pablo Osvaldo Lakkis, Susan Gabriela Yuchechen, Adrian Enrique |
author |
Canziani, Pablo Osvaldo |
author_facet |
Canziani, Pablo Osvaldo Lakkis, Susan Gabriela Yuchechen, Adrian Enrique |
author_role |
author |
author2 |
Lakkis, Susan Gabriela Yuchechen, Adrian Enrique |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ARGENTINA LONG-TERM DATA MONTHLY PRECIPITATION EXTREME EVENTS CLIMATE INDICES TRENDS LOW-FREQUENCY VARIABILITY CLIMATE CHANGE |
topic |
ARGENTINA LONG-TERM DATA MONTHLY PRECIPITATION EXTREME EVENTS CLIMATE INDICES TRENDS LOW-FREQUENCY VARIABILITY CLIMATE CHANGE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This study investigates the long-term variability and extremes of monthly precipitation during 150 years or more at 4 locations in Argentina: Corrientes, Córdoba, Buenos Aires, and Bahía Blanca. Annual and seasonal trends, extreme dry and wet months over the whole period, and the relationships between large-scale climate drivers and monthly rainfall are considered. Results show that, except for Córdoba, the complete anomaly timeseries trend analysis for all other stations yielded null trends over the centennial study period. Considerable month-to-month variability is observed for all locations together with the existence of low-frequency decadal to interdecadal variability, both for monthly precipitation anomalies and for statistically significant excess and deficit months. Linear fits considering oceanic climate indicators as drivers of variability yield significant differences between locations, while not between full records and seasonally sampled. Issues regarding the use of linear analysis to quantify variability, the dispersion along the timeline of record extreme rainy months at each location, together with the evidence of severe daily precipitation events not necessarily coinciding with the ranking of the rainiest months at each location, highlights the challenges of understanding the drivers of variability of both monthly and severe daily precipitation and the need of using extended centennial timeseries whenever possible. Fil: Canziani, Pablo Osvaldo. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lakkis, Susan Gabriela. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina Fil: Yuchechen, Adrian Enrique. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
This study investigates the long-term variability and extremes of monthly precipitation during 150 years or more at 4 locations in Argentina: Corrientes, Córdoba, Buenos Aires, and Bahía Blanca. Annual and seasonal trends, extreme dry and wet months over the whole period, and the relationships between large-scale climate drivers and monthly rainfall are considered. Results show that, except for Córdoba, the complete anomaly timeseries trend analysis for all other stations yielded null trends over the centennial study period. Considerable month-to-month variability is observed for all locations together with the existence of low-frequency decadal to interdecadal variability, both for monthly precipitation anomalies and for statistically significant excess and deficit months. Linear fits considering oceanic climate indicators as drivers of variability yield significant differences between locations, while not between full records and seasonally sampled. Issues regarding the use of linear analysis to quantify variability, the dispersion along the timeline of record extreme rainy months at each location, together with the evidence of severe daily precipitation events not necessarily coinciding with the ranking of the rainiest months at each location, highlights the challenges of understanding the drivers of variability of both monthly and severe daily precipitation and the need of using extended centennial timeseries whenever possible. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/271250 Canziani, Pablo Osvaldo; Lakkis, Susan Gabriela; Yuchechen, Adrian Enrique; A Study of Monthly Precipitation Timeseries from Argentina (Corrientes, Córdoba, Buenos Aires, and Bahía Blanca) for the Period of 1860–2023; MDPI; Atmosphere; 16; 8; 7-2025; 1-27 2073-4433 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/271250 |
identifier_str_mv |
Canziani, Pablo Osvaldo; Lakkis, Susan Gabriela; Yuchechen, Adrian Enrique; A Study of Monthly Precipitation Timeseries from Argentina (Corrientes, Córdoba, Buenos Aires, and Bahía Blanca) for the Period of 1860–2023; MDPI; Atmosphere; 16; 8; 7-2025; 1-27 2073-4433 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4433/16/8/914 info:eu-repo/semantics/altIdentifier/doi/10.3390/atmos16080914 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613903260057600 |
score |
13.070432 |