Theoretical study on the electronic and catalytic properties of Fe-doped TiO2 and its use in the removal of arsenic
- Autores
- Morgade, Cecilia Ines Nora; Cabeza, Gabriela Fernanda
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Arsenic (As) is atoxic element that can be fatal to humans. In the environment, it exists indifferent oxidation states (-III, 0, + III and + V). However, in natural water,the As is mainly found in inorganic form forming as oxyanions of trivalentarsenite As (III) or pentavalent arsenate As (V) depending on the redoxpotential and the pH of the water. The contamination of water with arsenic is aglobal problem related mainly to its extensive presence in water resources usedfor human consumption1. Arsenate is more stable, less mobile andtoxic than As (III) and more efficiently removed from water. Therefore, commonmethods for the removal of arsenic from water involve the oxidation of the As(III) to As (V) species. As an alternative to conventional procedures,different proposals have attracted considerable attention in recent years,including heterogeneous photocatalysis with titanium dioxide (TiO2)and the use of zero valent iron (Fe0) known as ZVI. At present, two experimental studies can be mentioned,a recent one by López-Muñoz2 and another study by Nguyen et al. informing the use ofphotocatalysis with TiO2and ZVI nanoparticles (NP-ZVI) for the removal of As (III) from aqueous systems3.The results obtained demonstrated an increase in the arsenic removal efficiencyof the aqueous solution when ZVI particles were added to the reactor. As photocatalysis with both systems pure TiO2and in combination with iron offer attractive advantages for the treatment ofarsenic in aqueous systems, it is interesting to compare their performance andexplore the potential synergism between them. That is why in this work bothsystems were modeled with the objective of determining the mainphysical-chemical parameters that control the activity and selectivity towardsthe oxidation of arsenic (As). The calculations were made using the VASP4code within the formalism of the Functional Density theory, with the inclusionof the Hubbard coefficient (DFT + U). The chosen surfaces of the titania are thecatalytically most active, anatase TiO2(101) and rutile TiO2(110). The As/TiO2 interaction was modeled by depositing 1, 2 or 4As0 atoms. Different Fe-doping options (cationic and interstitial)were studied. The As adsorption energies were calculated on both surfaces. The study is completed with the analysis of the adsorption of different arsenious species.
Fil: Morgade, Cecilia Ines Nora. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Cabeza, Gabriela Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
VI San Luis School and Conference on Surfaces, Interfaces and Catalysis
Santa Fe
Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fé. Instituto de Investigaciones en Catálisis y Petroquímica
Universidad Nacional del Litoral - Materia
-
TITANIA
DFT
ARSENIC
IRON - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/154587
Ver los metadatos del registro completo
id |
CONICETDig_95710325e465eb497f38fc2ca4b3459f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/154587 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Theoretical study on the electronic and catalytic properties of Fe-doped TiO2 and its use in the removal of arsenicMorgade, Cecilia Ines NoraCabeza, Gabriela FernandaTITANIADFTARSENICIRONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Arsenic (As) is atoxic element that can be fatal to humans. In the environment, it exists indifferent oxidation states (-III, 0, + III and + V). However, in natural water,the As is mainly found in inorganic form forming as oxyanions of trivalentarsenite As (III) or pentavalent arsenate As (V) depending on the redoxpotential and the pH of the water. The contamination of water with arsenic is aglobal problem related mainly to its extensive presence in water resources usedfor human consumption1. Arsenate is more stable, less mobile andtoxic than As (III) and more efficiently removed from water. Therefore, commonmethods for the removal of arsenic from water involve the oxidation of the As(III) to As (V) species. As an alternative to conventional procedures,different proposals have attracted considerable attention in recent years,including heterogeneous photocatalysis with titanium dioxide (TiO2)and the use of zero valent iron (Fe0) known as ZVI. At present, two experimental studies can be mentioned,a recent one by López-Muñoz2 and another study by Nguyen et al. informing the use ofphotocatalysis with TiO2and ZVI nanoparticles (NP-ZVI) for the removal of As (III) from aqueous systems3.The results obtained demonstrated an increase in the arsenic removal efficiencyof the aqueous solution when ZVI particles were added to the reactor. As photocatalysis with both systems pure TiO2and in combination with iron offer attractive advantages for the treatment ofarsenic in aqueous systems, it is interesting to compare their performance andexplore the potential synergism between them. That is why in this work bothsystems were modeled with the objective of determining the mainphysical-chemical parameters that control the activity and selectivity towardsthe oxidation of arsenic (As). The calculations were made using the VASP4code within the formalism of the Functional Density theory, with the inclusionof the Hubbard coefficient (DFT + U). The chosen surfaces of the titania are thecatalytically most active, anatase TiO2(101) and rutile TiO2(110). The As/TiO2 interaction was modeled by depositing 1, 2 or 4As0 atoms. Different Fe-doping options (cationic and interstitial)were studied. The As adsorption energies were calculated on both surfaces. The study is completed with the analysis of the adsorption of different arsenious species.Fil: Morgade, Cecilia Ines Nora. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Cabeza, Gabriela Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaVI San Luis School and Conference on Surfaces, Interfaces and CatalysisSanta FeArgentinaConsejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fé. Instituto de Investigaciones en Catálisis y PetroquímicaUniversidad Nacional del LitoralUniversidad Nacional del Litoral2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectConferenciaBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/154587Theoretical study on the electronic and catalytic properties of Fe-doped TiO2 and its use in the removal of arsenic; VI San Luis School and Conference on Surfaces, Interfaces and Catalysis; Santa Fe; Argentina; 2018; 132-132CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://servicios.intec.santafe-conicet.gov.ar/eventos/sanluisvi/important-information/vi-san-luis-conference/#BOAInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:08:45Zoai:ri.conicet.gov.ar:11336/154587instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:08:45.669CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Theoretical study on the electronic and catalytic properties of Fe-doped TiO2 and its use in the removal of arsenic |
title |
Theoretical study on the electronic and catalytic properties of Fe-doped TiO2 and its use in the removal of arsenic |
spellingShingle |
Theoretical study on the electronic and catalytic properties of Fe-doped TiO2 and its use in the removal of arsenic Morgade, Cecilia Ines Nora TITANIA DFT ARSENIC IRON |
title_short |
Theoretical study on the electronic and catalytic properties of Fe-doped TiO2 and its use in the removal of arsenic |
title_full |
Theoretical study on the electronic and catalytic properties of Fe-doped TiO2 and its use in the removal of arsenic |
title_fullStr |
Theoretical study on the electronic and catalytic properties of Fe-doped TiO2 and its use in the removal of arsenic |
title_full_unstemmed |
Theoretical study on the electronic and catalytic properties of Fe-doped TiO2 and its use in the removal of arsenic |
title_sort |
Theoretical study on the electronic and catalytic properties of Fe-doped TiO2 and its use in the removal of arsenic |
dc.creator.none.fl_str_mv |
Morgade, Cecilia Ines Nora Cabeza, Gabriela Fernanda |
author |
Morgade, Cecilia Ines Nora |
author_facet |
Morgade, Cecilia Ines Nora Cabeza, Gabriela Fernanda |
author_role |
author |
author2 |
Cabeza, Gabriela Fernanda |
author2_role |
author |
dc.subject.none.fl_str_mv |
TITANIA DFT ARSENIC IRON |
topic |
TITANIA DFT ARSENIC IRON |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Arsenic (As) is atoxic element that can be fatal to humans. In the environment, it exists indifferent oxidation states (-III, 0, + III and + V). However, in natural water,the As is mainly found in inorganic form forming as oxyanions of trivalentarsenite As (III) or pentavalent arsenate As (V) depending on the redoxpotential and the pH of the water. The contamination of water with arsenic is aglobal problem related mainly to its extensive presence in water resources usedfor human consumption1. Arsenate is more stable, less mobile andtoxic than As (III) and more efficiently removed from water. Therefore, commonmethods for the removal of arsenic from water involve the oxidation of the As(III) to As (V) species. As an alternative to conventional procedures,different proposals have attracted considerable attention in recent years,including heterogeneous photocatalysis with titanium dioxide (TiO2)and the use of zero valent iron (Fe0) known as ZVI. At present, two experimental studies can be mentioned,a recent one by López-Muñoz2 and another study by Nguyen et al. informing the use ofphotocatalysis with TiO2and ZVI nanoparticles (NP-ZVI) for the removal of As (III) from aqueous systems3.The results obtained demonstrated an increase in the arsenic removal efficiencyof the aqueous solution when ZVI particles were added to the reactor. As photocatalysis with both systems pure TiO2and in combination with iron offer attractive advantages for the treatment ofarsenic in aqueous systems, it is interesting to compare their performance andexplore the potential synergism between them. That is why in this work bothsystems were modeled with the objective of determining the mainphysical-chemical parameters that control the activity and selectivity towardsthe oxidation of arsenic (As). The calculations were made using the VASP4code within the formalism of the Functional Density theory, with the inclusionof the Hubbard coefficient (DFT + U). The chosen surfaces of the titania are thecatalytically most active, anatase TiO2(101) and rutile TiO2(110). The As/TiO2 interaction was modeled by depositing 1, 2 or 4As0 atoms. Different Fe-doping options (cationic and interstitial)were studied. The As adsorption energies were calculated on both surfaces. The study is completed with the analysis of the adsorption of different arsenious species. Fil: Morgade, Cecilia Ines Nora. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina Fil: Cabeza, Gabriela Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina VI San Luis School and Conference on Surfaces, Interfaces and Catalysis Santa Fe Argentina Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fé. Instituto de Investigaciones en Catálisis y Petroquímica Universidad Nacional del Litoral |
description |
Arsenic (As) is atoxic element that can be fatal to humans. In the environment, it exists indifferent oxidation states (-III, 0, + III and + V). However, in natural water,the As is mainly found in inorganic form forming as oxyanions of trivalentarsenite As (III) or pentavalent arsenate As (V) depending on the redoxpotential and the pH of the water. The contamination of water with arsenic is aglobal problem related mainly to its extensive presence in water resources usedfor human consumption1. Arsenate is more stable, less mobile andtoxic than As (III) and more efficiently removed from water. Therefore, commonmethods for the removal of arsenic from water involve the oxidation of the As(III) to As (V) species. As an alternative to conventional procedures,different proposals have attracted considerable attention in recent years,including heterogeneous photocatalysis with titanium dioxide (TiO2)and the use of zero valent iron (Fe0) known as ZVI. At present, two experimental studies can be mentioned,a recent one by López-Muñoz2 and another study by Nguyen et al. informing the use ofphotocatalysis with TiO2and ZVI nanoparticles (NP-ZVI) for the removal of As (III) from aqueous systems3.The results obtained demonstrated an increase in the arsenic removal efficiencyof the aqueous solution when ZVI particles were added to the reactor. As photocatalysis with both systems pure TiO2and in combination with iron offer attractive advantages for the treatment ofarsenic in aqueous systems, it is interesting to compare their performance andexplore the potential synergism between them. That is why in this work bothsystems were modeled with the objective of determining the mainphysical-chemical parameters that control the activity and selectivity towardsthe oxidation of arsenic (As). The calculations were made using the VASP4code within the formalism of the Functional Density theory, with the inclusionof the Hubbard coefficient (DFT + U). The chosen surfaces of the titania are thecatalytically most active, anatase TiO2(101) and rutile TiO2(110). The As/TiO2 interaction was modeled by depositing 1, 2 or 4As0 atoms. Different Fe-doping options (cationic and interstitial)were studied. The As adsorption energies were calculated on both surfaces. The study is completed with the analysis of the adsorption of different arsenious species. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Conferencia Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/154587 Theoretical study on the electronic and catalytic properties of Fe-doped TiO2 and its use in the removal of arsenic; VI San Luis School and Conference on Surfaces, Interfaces and Catalysis; Santa Fe; Argentina; 2018; 132-132 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/154587 |
identifier_str_mv |
Theoretical study on the electronic and catalytic properties of Fe-doped TiO2 and its use in the removal of arsenic; VI San Luis School and Conference on Surfaces, Interfaces and Catalysis; Santa Fe; Argentina; 2018; 132-132 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://servicios.intec.santafe-conicet.gov.ar/eventos/sanluisvi/important-information/vi-san-luis-conference/#BOA |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Universidad Nacional del Litoral |
publisher.none.fl_str_mv |
Universidad Nacional del Litoral |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613958527352832 |
score |
13.070432 |