Semiclassical coherent-states propagator

Autores
Rivas, Alejandro Mariano Fidel
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work, we derived a semiclassical approximation for the matrix elements of a quantum propagator in coherent states (CS) basis that avoids complex trajectories; it only involves real ones. For that purpose, we used the symplectically invariant semiclassical Weyl propagator obtained by performing a stationary phase approximation (SPA) for the path integral in the Weyl representation. After that, for the transformation to CS representation SPA is avoided; instead a quadratic expansion of the complex exponent is used. This procedure also allows us to express the semiclassical CS propagator uniquely in terms of the classical evolution of the initial point without the need of any root search typical of van Vleck–Gutzwiller-based propagators. For the case of chaotic Hamiltonian systems, the explicit time dependence of the CS propagator has been obtained. The comparison with a realistic chaotic system that derives from a quadratic Hamiltonian, the cat map, reveals that the expression here derived is exact up to quadratic Hamiltonian systems.
Fil: Rivas, Alejandro Mariano Fidel. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Semiclasscial Physica
Quantum propagator
Coherent States
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/24612

id CONICETDig_951bab9855fbc8b8756efd4f9160dc26
oai_identifier_str oai:ri.conicet.gov.ar:11336/24612
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Semiclassical coherent-states propagatorRivas, Alejandro Mariano FidelSemiclasscial PhysicaQuantum propagatorCoherent Stateshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this work, we derived a semiclassical approximation for the matrix elements of a quantum propagator in coherent states (CS) basis that avoids complex trajectories; it only involves real ones. For that purpose, we used the symplectically invariant semiclassical Weyl propagator obtained by performing a stationary phase approximation (SPA) for the path integral in the Weyl representation. After that, for the transformation to CS representation SPA is avoided; instead a quadratic expansion of the complex exponent is used. This procedure also allows us to express the semiclassical CS propagator uniquely in terms of the classical evolution of the initial point without the need of any root search typical of van Vleck–Gutzwiller-based propagators. For the case of chaotic Hamiltonian systems, the explicit time dependence of the CS propagator has been obtained. The comparison with a realistic chaotic system that derives from a quadratic Hamiltonian, the cat map, reveals that the expression here derived is exact up to quadratic Hamiltonian systems.Fil: Rivas, Alejandro Mariano Fidel. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Physical Society2013-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/24612Rivas, Alejandro Mariano Fidel; Semiclassical coherent-states propagator; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 88; 1; 6-2013; 1-111050-2947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.88.012104info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.88.012104info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1207.0012info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:35:50Zoai:ri.conicet.gov.ar:11336/24612instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:35:50.338CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Semiclassical coherent-states propagator
title Semiclassical coherent-states propagator
spellingShingle Semiclassical coherent-states propagator
Rivas, Alejandro Mariano Fidel
Semiclasscial Physica
Quantum propagator
Coherent States
title_short Semiclassical coherent-states propagator
title_full Semiclassical coherent-states propagator
title_fullStr Semiclassical coherent-states propagator
title_full_unstemmed Semiclassical coherent-states propagator
title_sort Semiclassical coherent-states propagator
dc.creator.none.fl_str_mv Rivas, Alejandro Mariano Fidel
author Rivas, Alejandro Mariano Fidel
author_facet Rivas, Alejandro Mariano Fidel
author_role author
dc.subject.none.fl_str_mv Semiclasscial Physica
Quantum propagator
Coherent States
topic Semiclasscial Physica
Quantum propagator
Coherent States
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work, we derived a semiclassical approximation for the matrix elements of a quantum propagator in coherent states (CS) basis that avoids complex trajectories; it only involves real ones. For that purpose, we used the symplectically invariant semiclassical Weyl propagator obtained by performing a stationary phase approximation (SPA) for the path integral in the Weyl representation. After that, for the transformation to CS representation SPA is avoided; instead a quadratic expansion of the complex exponent is used. This procedure also allows us to express the semiclassical CS propagator uniquely in terms of the classical evolution of the initial point without the need of any root search typical of van Vleck–Gutzwiller-based propagators. For the case of chaotic Hamiltonian systems, the explicit time dependence of the CS propagator has been obtained. The comparison with a realistic chaotic system that derives from a quadratic Hamiltonian, the cat map, reveals that the expression here derived is exact up to quadratic Hamiltonian systems.
Fil: Rivas, Alejandro Mariano Fidel. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description In this work, we derived a semiclassical approximation for the matrix elements of a quantum propagator in coherent states (CS) basis that avoids complex trajectories; it only involves real ones. For that purpose, we used the symplectically invariant semiclassical Weyl propagator obtained by performing a stationary phase approximation (SPA) for the path integral in the Weyl representation. After that, for the transformation to CS representation SPA is avoided; instead a quadratic expansion of the complex exponent is used. This procedure also allows us to express the semiclassical CS propagator uniquely in terms of the classical evolution of the initial point without the need of any root search typical of van Vleck–Gutzwiller-based propagators. For the case of chaotic Hamiltonian systems, the explicit time dependence of the CS propagator has been obtained. The comparison with a realistic chaotic system that derives from a quadratic Hamiltonian, the cat map, reveals that the expression here derived is exact up to quadratic Hamiltonian systems.
publishDate 2013
dc.date.none.fl_str_mv 2013-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/24612
Rivas, Alejandro Mariano Fidel; Semiclassical coherent-states propagator; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 88; 1; 6-2013; 1-11
1050-2947
CONICET Digital
CONICET
url http://hdl.handle.net/11336/24612
identifier_str_mv Rivas, Alejandro Mariano Fidel; Semiclassical coherent-states propagator; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 88; 1; 6-2013; 1-11
1050-2947
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.88.012104
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.88.012104
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1207.0012
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614377701900288
score 13.070432