Comments on Ekino et al. Cloning and Characterization of a Unique Cytotoxic Protein Parasporin-5 Produced by Bacillus thuringiensis A1100 Strain. Toxins 2014, 6, 1882–1895

Autores
Palma, Leopoldo
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Ekino et al. [1] reported the cloning and characterization of a novel cytotoxic protein (Parasporin-5) produced by Bacillus thuringiensis strain A1100. The 33.8-kDa inactive precursor protein exhibited strong cytocidal activity upon proteinase K activation against several mammalian (cancer) cell lines, and showed slight homology with Cry and aerolysin-type -pore-forming toxins. Most research concerning parasporins has mainly been performed in order to demonstrate their use as potential therapeutic agents against cancer, but they are lacking additional research supporting the absence of activity against invertebrates; especially, taking into account that these toxins are not expected to evolve to kill cancer cells. Therefore, it is reasonable to think that they should have another (unknown) target in nature. Despite the fact that in this work, the authors demonstrated the toxic activity of this protein against several types of cancer cells, further complementary studies against a minimum number of insects would be of great interest in order to determine the potential insecticidal activity of this protein and understand its natural role. For example, Palma and collaborators [2] reported the molecular and insecticidal characterization of a novel Cry-related protein closely related to parasporins 2 and 4, (Cry41Aa1 and Cry41Ab1). This protein did not show any toxic activity against five species of Lepidoptera but, after more extensive testing, this protein was found to demonstrate a specific toxic activity against the green-peach aphid Myzus persicae. Nowadays, parasporin proteins are commonly known in the literature to be produced by “non-insecticidal” B. thuringiensis strains and because they exhibit significant and preferential cytocidal activity against cancer cells of various origins [3]. However, the absence of insecticidal activity deserves to be more deeply investigated since a single B. thuringiensis toxin has shown to have a narrow host range while, in general, they are active against a wide range of invertebrates [4,5]. Therefore, the determination of the activity against a minimum number of insects (preferably from different taxonomic orders) is highly desirable and might change the non-insecticidal concept we currently have about parasporins proteins produced by non-insecticidal B. thuringiensis strains.
Fil: Palma, Leopoldo. Universidad Nacional del Litoral. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Materia
BACILLUS THURINGIENSIS
BT TOXINS
ANTI CANCER ACTIVITY
PARASPORINS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/49815

id CONICETDig_9410913e07276b3f6c200632c29a25dc
oai_identifier_str oai:ri.conicet.gov.ar:11336/49815
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Comments on Ekino et al. Cloning and Characterization of a Unique Cytotoxic Protein Parasporin-5 Produced by Bacillus thuringiensis A1100 Strain. Toxins 2014, 6, 1882–1895Palma, LeopoldoBACILLUS THURINGIENSISBT TOXINSANTI CANCER ACTIVITYPARASPORINShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Ekino et al. [1] reported the cloning and characterization of a novel cytotoxic protein (Parasporin-5) produced by Bacillus thuringiensis strain A1100. The 33.8-kDa inactive precursor protein exhibited strong cytocidal activity upon proteinase K activation against several mammalian (cancer) cell lines, and showed slight homology with Cry and aerolysin-type -pore-forming toxins. Most research concerning parasporins has mainly been performed in order to demonstrate their use as potential therapeutic agents against cancer, but they are lacking additional research supporting the absence of activity against invertebrates; especially, taking into account that these toxins are not expected to evolve to kill cancer cells. Therefore, it is reasonable to think that they should have another (unknown) target in nature. Despite the fact that in this work, the authors demonstrated the toxic activity of this protein against several types of cancer cells, further complementary studies against a minimum number of insects would be of great interest in order to determine the potential insecticidal activity of this protein and understand its natural role. For example, Palma and collaborators [2] reported the molecular and insecticidal characterization of a novel Cry-related protein closely related to parasporins 2 and 4, (Cry41Aa1 and Cry41Ab1). This protein did not show any toxic activity against five species of Lepidoptera but, after more extensive testing, this protein was found to demonstrate a specific toxic activity against the green-peach aphid Myzus persicae. Nowadays, parasporin proteins are commonly known in the literature to be produced by “non-insecticidal” B. thuringiensis strains and because they exhibit significant and preferential cytocidal activity against cancer cells of various origins [3]. However, the absence of insecticidal activity deserves to be more deeply investigated since a single B. thuringiensis toxin has shown to have a narrow host range while, in general, they are active against a wide range of invertebrates [4,5]. Therefore, the determination of the activity against a minimum number of insects (preferably from different taxonomic orders) is highly desirable and might change the non-insecticidal concept we currently have about parasporins proteins produced by non-insecticidal B. thuringiensis strains.Fil: Palma, Leopoldo. Universidad Nacional del Litoral. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaMDPI2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/49815Palma, Leopoldo; Comments on Ekino et al. Cloning and Characterization of a Unique Cytotoxic Protein Parasporin-5 Produced by Bacillus thuringiensis A1100 Strain. Toxins 2014, 6, 1882–1895; MDPI; Toxins; 7; 12; 11-2015; 5094-50952072-6651CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/toxins7124865info:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/2072-6651/7/12/4865info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:26Zoai:ri.conicet.gov.ar:11336/49815instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:27.013CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Comments on Ekino et al. Cloning and Characterization of a Unique Cytotoxic Protein Parasporin-5 Produced by Bacillus thuringiensis A1100 Strain. Toxins 2014, 6, 1882–1895
title Comments on Ekino et al. Cloning and Characterization of a Unique Cytotoxic Protein Parasporin-5 Produced by Bacillus thuringiensis A1100 Strain. Toxins 2014, 6, 1882–1895
spellingShingle Comments on Ekino et al. Cloning and Characterization of a Unique Cytotoxic Protein Parasporin-5 Produced by Bacillus thuringiensis A1100 Strain. Toxins 2014, 6, 1882–1895
Palma, Leopoldo
BACILLUS THURINGIENSIS
BT TOXINS
ANTI CANCER ACTIVITY
PARASPORINS
title_short Comments on Ekino et al. Cloning and Characterization of a Unique Cytotoxic Protein Parasporin-5 Produced by Bacillus thuringiensis A1100 Strain. Toxins 2014, 6, 1882–1895
title_full Comments on Ekino et al. Cloning and Characterization of a Unique Cytotoxic Protein Parasporin-5 Produced by Bacillus thuringiensis A1100 Strain. Toxins 2014, 6, 1882–1895
title_fullStr Comments on Ekino et al. Cloning and Characterization of a Unique Cytotoxic Protein Parasporin-5 Produced by Bacillus thuringiensis A1100 Strain. Toxins 2014, 6, 1882–1895
title_full_unstemmed Comments on Ekino et al. Cloning and Characterization of a Unique Cytotoxic Protein Parasporin-5 Produced by Bacillus thuringiensis A1100 Strain. Toxins 2014, 6, 1882–1895
title_sort Comments on Ekino et al. Cloning and Characterization of a Unique Cytotoxic Protein Parasporin-5 Produced by Bacillus thuringiensis A1100 Strain. Toxins 2014, 6, 1882–1895
dc.creator.none.fl_str_mv Palma, Leopoldo
author Palma, Leopoldo
author_facet Palma, Leopoldo
author_role author
dc.subject.none.fl_str_mv BACILLUS THURINGIENSIS
BT TOXINS
ANTI CANCER ACTIVITY
PARASPORINS
topic BACILLUS THURINGIENSIS
BT TOXINS
ANTI CANCER ACTIVITY
PARASPORINS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Ekino et al. [1] reported the cloning and characterization of a novel cytotoxic protein (Parasporin-5) produced by Bacillus thuringiensis strain A1100. The 33.8-kDa inactive precursor protein exhibited strong cytocidal activity upon proteinase K activation against several mammalian (cancer) cell lines, and showed slight homology with Cry and aerolysin-type -pore-forming toxins. Most research concerning parasporins has mainly been performed in order to demonstrate their use as potential therapeutic agents against cancer, but they are lacking additional research supporting the absence of activity against invertebrates; especially, taking into account that these toxins are not expected to evolve to kill cancer cells. Therefore, it is reasonable to think that they should have another (unknown) target in nature. Despite the fact that in this work, the authors demonstrated the toxic activity of this protein against several types of cancer cells, further complementary studies against a minimum number of insects would be of great interest in order to determine the potential insecticidal activity of this protein and understand its natural role. For example, Palma and collaborators [2] reported the molecular and insecticidal characterization of a novel Cry-related protein closely related to parasporins 2 and 4, (Cry41Aa1 and Cry41Ab1). This protein did not show any toxic activity against five species of Lepidoptera but, after more extensive testing, this protein was found to demonstrate a specific toxic activity against the green-peach aphid Myzus persicae. Nowadays, parasporin proteins are commonly known in the literature to be produced by “non-insecticidal” B. thuringiensis strains and because they exhibit significant and preferential cytocidal activity against cancer cells of various origins [3]. However, the absence of insecticidal activity deserves to be more deeply investigated since a single B. thuringiensis toxin has shown to have a narrow host range while, in general, they are active against a wide range of invertebrates [4,5]. Therefore, the determination of the activity against a minimum number of insects (preferably from different taxonomic orders) is highly desirable and might change the non-insecticidal concept we currently have about parasporins proteins produced by non-insecticidal B. thuringiensis strains.
Fil: Palma, Leopoldo. Universidad Nacional del Litoral. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
description Ekino et al. [1] reported the cloning and characterization of a novel cytotoxic protein (Parasporin-5) produced by Bacillus thuringiensis strain A1100. The 33.8-kDa inactive precursor protein exhibited strong cytocidal activity upon proteinase K activation against several mammalian (cancer) cell lines, and showed slight homology with Cry and aerolysin-type -pore-forming toxins. Most research concerning parasporins has mainly been performed in order to demonstrate their use as potential therapeutic agents against cancer, but they are lacking additional research supporting the absence of activity against invertebrates; especially, taking into account that these toxins are not expected to evolve to kill cancer cells. Therefore, it is reasonable to think that they should have another (unknown) target in nature. Despite the fact that in this work, the authors demonstrated the toxic activity of this protein against several types of cancer cells, further complementary studies against a minimum number of insects would be of great interest in order to determine the potential insecticidal activity of this protein and understand its natural role. For example, Palma and collaborators [2] reported the molecular and insecticidal characterization of a novel Cry-related protein closely related to parasporins 2 and 4, (Cry41Aa1 and Cry41Ab1). This protein did not show any toxic activity against five species of Lepidoptera but, after more extensive testing, this protein was found to demonstrate a specific toxic activity against the green-peach aphid Myzus persicae. Nowadays, parasporin proteins are commonly known in the literature to be produced by “non-insecticidal” B. thuringiensis strains and because they exhibit significant and preferential cytocidal activity against cancer cells of various origins [3]. However, the absence of insecticidal activity deserves to be more deeply investigated since a single B. thuringiensis toxin has shown to have a narrow host range while, in general, they are active against a wide range of invertebrates [4,5]. Therefore, the determination of the activity against a minimum number of insects (preferably from different taxonomic orders) is highly desirable and might change the non-insecticidal concept we currently have about parasporins proteins produced by non-insecticidal B. thuringiensis strains.
publishDate 2015
dc.date.none.fl_str_mv 2015-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/49815
Palma, Leopoldo; Comments on Ekino et al. Cloning and Characterization of a Unique Cytotoxic Protein Parasporin-5 Produced by Bacillus thuringiensis A1100 Strain. Toxins 2014, 6, 1882–1895; MDPI; Toxins; 7; 12; 11-2015; 5094-5095
2072-6651
CONICET Digital
CONICET
url http://hdl.handle.net/11336/49815
identifier_str_mv Palma, Leopoldo; Comments on Ekino et al. Cloning and Characterization of a Unique Cytotoxic Protein Parasporin-5 Produced by Bacillus thuringiensis A1100 Strain. Toxins 2014, 6, 1882–1895; MDPI; Toxins; 7; 12; 11-2015; 5094-5095
2072-6651
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3390/toxins7124865
info:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/2072-6651/7/12/4865
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613582193426432
score 13.070432