Why are CMEs large-scale coronal events: nature or nurture?

Autores
van Driel Gesztelyi, Lidia; Attrill, G. D. R.; Démoulin, Pascal; Mandrini, Cristina Hemilse; Harra, L. K.
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The apparent contradiction between small-scale source regions of, and large-scale coronal response to, coronal mass ejections (CMEs) has been a long-standing puzzle. For some, CMEs are considered to be inherently large-scale events – eruptions in which a number of flux systems participate in an unspecified manner, while others consider magnetic reconnection in special global topologies to be responsible for the large-scale response of the lower corona to CME events. Some of these ideas may indeed be correct in specific cases. However, what is the key element which makes CMEs large-scale? Observations show that the extent of the coronal disturbance matches the angular width of the CME – an important clue, which does not feature strongly in any of the above suggestions. We review observational evidence for the large-scale nature of CME source regions and find them lacking. Then we compare different ideas regarding how CMEs evolve to become large-scale. The large-scale magnetic topology plays an important role in this process. There is amounting evidence, however, that the key process is magnetic reconnection between the CME and other magnetic structures. We outline a CME evolution model, which is able to account for all the key observational signatures of large-scale CMEs and presents a clear picture how large portions of the Sun become constituents of the CME. In this model reconnection is driven by the expansion of the CME core resulting from an over-pressure relative to the pressure in the CME's surroundings. This implies that the extent of the lower coronal signatures match the final angular width of the CME.
Fil: van Driel Gesztelyi, Lidia. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia
Fil: Attrill, G. D. R.. University College London; Estados Unidos
Fil: Démoulin, Pascal. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia
Fil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Harra, L. K.. University College London; Estados Unidos
Materia
SUN: CORONA
SUN: CORONAL MASS EJECTIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/20703

id CONICETDig_93cafa8346ed92c6573577026e276a21
oai_identifier_str oai:ri.conicet.gov.ar:11336/20703
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Why are CMEs large-scale coronal events: nature or nurture?van Driel Gesztelyi, LidiaAttrill, G. D. R.Démoulin, PascalMandrini, Cristina HemilseHarra, L. K.SUN: CORONASUN: CORONAL MASS EJECTIONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The apparent contradiction between small-scale source regions of, and large-scale coronal response to, coronal mass ejections (CMEs) has been a long-standing puzzle. For some, CMEs are considered to be inherently large-scale events – eruptions in which a number of flux systems participate in an unspecified manner, while others consider magnetic reconnection in special global topologies to be responsible for the large-scale response of the lower corona to CME events. Some of these ideas may indeed be correct in specific cases. However, what is the key element which makes CMEs large-scale? Observations show that the extent of the coronal disturbance matches the angular width of the CME – an important clue, which does not feature strongly in any of the above suggestions. We review observational evidence for the large-scale nature of CME source regions and find them lacking. Then we compare different ideas regarding how CMEs evolve to become large-scale. The large-scale magnetic topology plays an important role in this process. There is amounting evidence, however, that the key process is magnetic reconnection between the CME and other magnetic structures. We outline a CME evolution model, which is able to account for all the key observational signatures of large-scale CMEs and presents a clear picture how large portions of the Sun become constituents of the CME. In this model reconnection is driven by the expansion of the CME core resulting from an over-pressure relative to the pressure in the CME's surroundings. This implies that the extent of the lower coronal signatures match the final angular width of the CME.Fil: van Driel Gesztelyi, Lidia. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Attrill, G. D. R.. University College London; Estados UnidosFil: Démoulin, Pascal. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Harra, L. K.. University College London; Estados UnidosCopernicus Publications2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20703van Driel Gesztelyi, Lidia; Attrill, G. D. R.; Démoulin, Pascal; Mandrini, Cristina Hemilse; Harra, L. K.; Why are CMEs large-scale coronal events: nature or nurture?; Copernicus Publications; Annales Geophysicae; 26; 12-2008; 3077-30880992-76891432-0576CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5194/angeo-26-3077-2008info:eu-repo/semantics/altIdentifier/url/http://www.ann-geophys.net/26/3077/2008/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:32:22Zoai:ri.conicet.gov.ar:11336/20703instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:32:22.695CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Why are CMEs large-scale coronal events: nature or nurture?
title Why are CMEs large-scale coronal events: nature or nurture?
spellingShingle Why are CMEs large-scale coronal events: nature or nurture?
van Driel Gesztelyi, Lidia
SUN: CORONA
SUN: CORONAL MASS EJECTIONS
title_short Why are CMEs large-scale coronal events: nature or nurture?
title_full Why are CMEs large-scale coronal events: nature or nurture?
title_fullStr Why are CMEs large-scale coronal events: nature or nurture?
title_full_unstemmed Why are CMEs large-scale coronal events: nature or nurture?
title_sort Why are CMEs large-scale coronal events: nature or nurture?
dc.creator.none.fl_str_mv van Driel Gesztelyi, Lidia
Attrill, G. D. R.
Démoulin, Pascal
Mandrini, Cristina Hemilse
Harra, L. K.
author van Driel Gesztelyi, Lidia
author_facet van Driel Gesztelyi, Lidia
Attrill, G. D. R.
Démoulin, Pascal
Mandrini, Cristina Hemilse
Harra, L. K.
author_role author
author2 Attrill, G. D. R.
Démoulin, Pascal
Mandrini, Cristina Hemilse
Harra, L. K.
author2_role author
author
author
author
dc.subject.none.fl_str_mv SUN: CORONA
SUN: CORONAL MASS EJECTIONS
topic SUN: CORONA
SUN: CORONAL MASS EJECTIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The apparent contradiction between small-scale source regions of, and large-scale coronal response to, coronal mass ejections (CMEs) has been a long-standing puzzle. For some, CMEs are considered to be inherently large-scale events – eruptions in which a number of flux systems participate in an unspecified manner, while others consider magnetic reconnection in special global topologies to be responsible for the large-scale response of the lower corona to CME events. Some of these ideas may indeed be correct in specific cases. However, what is the key element which makes CMEs large-scale? Observations show that the extent of the coronal disturbance matches the angular width of the CME – an important clue, which does not feature strongly in any of the above suggestions. We review observational evidence for the large-scale nature of CME source regions and find them lacking. Then we compare different ideas regarding how CMEs evolve to become large-scale. The large-scale magnetic topology plays an important role in this process. There is amounting evidence, however, that the key process is magnetic reconnection between the CME and other magnetic structures. We outline a CME evolution model, which is able to account for all the key observational signatures of large-scale CMEs and presents a clear picture how large portions of the Sun become constituents of the CME. In this model reconnection is driven by the expansion of the CME core resulting from an over-pressure relative to the pressure in the CME's surroundings. This implies that the extent of the lower coronal signatures match the final angular width of the CME.
Fil: van Driel Gesztelyi, Lidia. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia
Fil: Attrill, G. D. R.. University College London; Estados Unidos
Fil: Démoulin, Pascal. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia
Fil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Harra, L. K.. University College London; Estados Unidos
description The apparent contradiction between small-scale source regions of, and large-scale coronal response to, coronal mass ejections (CMEs) has been a long-standing puzzle. For some, CMEs are considered to be inherently large-scale events – eruptions in which a number of flux systems participate in an unspecified manner, while others consider magnetic reconnection in special global topologies to be responsible for the large-scale response of the lower corona to CME events. Some of these ideas may indeed be correct in specific cases. However, what is the key element which makes CMEs large-scale? Observations show that the extent of the coronal disturbance matches the angular width of the CME – an important clue, which does not feature strongly in any of the above suggestions. We review observational evidence for the large-scale nature of CME source regions and find them lacking. Then we compare different ideas regarding how CMEs evolve to become large-scale. The large-scale magnetic topology plays an important role in this process. There is amounting evidence, however, that the key process is magnetic reconnection between the CME and other magnetic structures. We outline a CME evolution model, which is able to account for all the key observational signatures of large-scale CMEs and presents a clear picture how large portions of the Sun become constituents of the CME. In this model reconnection is driven by the expansion of the CME core resulting from an over-pressure relative to the pressure in the CME's surroundings. This implies that the extent of the lower coronal signatures match the final angular width of the CME.
publishDate 2008
dc.date.none.fl_str_mv 2008-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/20703
van Driel Gesztelyi, Lidia; Attrill, G. D. R.; Démoulin, Pascal; Mandrini, Cristina Hemilse; Harra, L. K.; Why are CMEs large-scale coronal events: nature or nurture?; Copernicus Publications; Annales Geophysicae; 26; 12-2008; 3077-3088
0992-7689
1432-0576
CONICET Digital
CONICET
url http://hdl.handle.net/11336/20703
identifier_str_mv van Driel Gesztelyi, Lidia; Attrill, G. D. R.; Démoulin, Pascal; Mandrini, Cristina Hemilse; Harra, L. K.; Why are CMEs large-scale coronal events: nature or nurture?; Copernicus Publications; Annales Geophysicae; 26; 12-2008; 3077-3088
0992-7689
1432-0576
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.5194/angeo-26-3077-2008
info:eu-repo/semantics/altIdentifier/url/http://www.ann-geophys.net/26/3077/2008/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Copernicus Publications
publisher.none.fl_str_mv Copernicus Publications
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606683648000000
score 13.001348