Thermodynamically consistent entropic-force cosmology

Autores
Zamora, Darío Javier; Tsallis, Constantino
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We analyze the thermodynamical consistency of entropic-force cosmological models. Our analysis is based on a generalized entropy scaling with an arbitrary power of the Hubble radius. The Bekenstein-Hawking entropy, proportional to the area, and the nonadditive Sδ=3/2-entropy, proportional to the volume, are particular cases. One of the points to be solved by entropic-force cosmology for being taken as a serious alternative to mainstream cosmology is to provide a physical principle that points out what entropy and temperature have to be used. We determine the temperature of the universe horizon by requiring that the Legendre structure of thermodynamics is preserved. We compare the performance of thermodynamically consistent entropic-force models with regard to the available supernovae data by providing appropriate constraints for optimizing alternative entropies and temperatures of the Hubble screen. Our results point out that the temperature differs from the Hawking one. The novelty of this work is that our analysis is based on a generalized entropy scaling with an arbitrary power of the Hubble radius, instead of a specific entropy. This allows us to conclude on various models at once, compare them, and conserve the scaling exponent as a parameter to be fitted with observational data, thus providing information about the form of the actual cosmological entropy and temperature. In addition, we point out that some entropic-force cosmological models previously available in the literature are not thermodynamically consistent. We provide here a physical principle which links the horizon temperature and entropy in consistency with thermodynamics.
Fil: Zamora, Darío Javier. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Tsallis, Constantino. Complexity Science Hub Vienna; Austria. Santa Fe Institute; Estados Unidos. Centro Brasileiro de Pesquisas Físicas; Brasil
Materia
COSMOLOGY
ENTROPIC FORCE
GENERALIZED ENTROPIES
HOLOGRAPHY
INFLATION
THERMODYNAMICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/161774

id CONICETDig_93956ed6b4744e69b1d12b610afdbabf
oai_identifier_str oai:ri.conicet.gov.ar:11336/161774
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Thermodynamically consistent entropic-force cosmologyZamora, Darío JavierTsallis, ConstantinoCOSMOLOGYENTROPIC FORCEGENERALIZED ENTROPIESHOLOGRAPHYINFLATIONTHERMODYNAMICShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We analyze the thermodynamical consistency of entropic-force cosmological models. Our analysis is based on a generalized entropy scaling with an arbitrary power of the Hubble radius. The Bekenstein-Hawking entropy, proportional to the area, and the nonadditive Sδ=3/2-entropy, proportional to the volume, are particular cases. One of the points to be solved by entropic-force cosmology for being taken as a serious alternative to mainstream cosmology is to provide a physical principle that points out what entropy and temperature have to be used. We determine the temperature of the universe horizon by requiring that the Legendre structure of thermodynamics is preserved. We compare the performance of thermodynamically consistent entropic-force models with regard to the available supernovae data by providing appropriate constraints for optimizing alternative entropies and temperatures of the Hubble screen. Our results point out that the temperature differs from the Hawking one. The novelty of this work is that our analysis is based on a generalized entropy scaling with an arbitrary power of the Hubble radius, instead of a specific entropy. This allows us to conclude on various models at once, compare them, and conserve the scaling exponent as a parameter to be fitted with observational data, thus providing information about the form of the actual cosmological entropy and temperature. In addition, we point out that some entropic-force cosmological models previously available in the literature are not thermodynamically consistent. We provide here a physical principle which links the horizon temperature and entropy in consistency with thermodynamics.Fil: Zamora, Darío Javier. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Tsallis, Constantino. Complexity Science Hub Vienna; Austria. Santa Fe Institute; Estados Unidos. Centro Brasileiro de Pesquisas Físicas; BrasilElsevier Science2022-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/161774Zamora, Darío Javier; Tsallis, Constantino; Thermodynamically consistent entropic-force cosmology; Elsevier Science; Physics Letters B; 827; 136967; 4-2022; 1-60370-2693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physletb.2022.136967info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0370269322001010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:23:20Zoai:ri.conicet.gov.ar:11336/161774instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:23:21.0CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Thermodynamically consistent entropic-force cosmology
title Thermodynamically consistent entropic-force cosmology
spellingShingle Thermodynamically consistent entropic-force cosmology
Zamora, Darío Javier
COSMOLOGY
ENTROPIC FORCE
GENERALIZED ENTROPIES
HOLOGRAPHY
INFLATION
THERMODYNAMICS
title_short Thermodynamically consistent entropic-force cosmology
title_full Thermodynamically consistent entropic-force cosmology
title_fullStr Thermodynamically consistent entropic-force cosmology
title_full_unstemmed Thermodynamically consistent entropic-force cosmology
title_sort Thermodynamically consistent entropic-force cosmology
dc.creator.none.fl_str_mv Zamora, Darío Javier
Tsallis, Constantino
author Zamora, Darío Javier
author_facet Zamora, Darío Javier
Tsallis, Constantino
author_role author
author2 Tsallis, Constantino
author2_role author
dc.subject.none.fl_str_mv COSMOLOGY
ENTROPIC FORCE
GENERALIZED ENTROPIES
HOLOGRAPHY
INFLATION
THERMODYNAMICS
topic COSMOLOGY
ENTROPIC FORCE
GENERALIZED ENTROPIES
HOLOGRAPHY
INFLATION
THERMODYNAMICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We analyze the thermodynamical consistency of entropic-force cosmological models. Our analysis is based on a generalized entropy scaling with an arbitrary power of the Hubble radius. The Bekenstein-Hawking entropy, proportional to the area, and the nonadditive Sδ=3/2-entropy, proportional to the volume, are particular cases. One of the points to be solved by entropic-force cosmology for being taken as a serious alternative to mainstream cosmology is to provide a physical principle that points out what entropy and temperature have to be used. We determine the temperature of the universe horizon by requiring that the Legendre structure of thermodynamics is preserved. We compare the performance of thermodynamically consistent entropic-force models with regard to the available supernovae data by providing appropriate constraints for optimizing alternative entropies and temperatures of the Hubble screen. Our results point out that the temperature differs from the Hawking one. The novelty of this work is that our analysis is based on a generalized entropy scaling with an arbitrary power of the Hubble radius, instead of a specific entropy. This allows us to conclude on various models at once, compare them, and conserve the scaling exponent as a parameter to be fitted with observational data, thus providing information about the form of the actual cosmological entropy and temperature. In addition, we point out that some entropic-force cosmological models previously available in the literature are not thermodynamically consistent. We provide here a physical principle which links the horizon temperature and entropy in consistency with thermodynamics.
Fil: Zamora, Darío Javier. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentina. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Tsallis, Constantino. Complexity Science Hub Vienna; Austria. Santa Fe Institute; Estados Unidos. Centro Brasileiro de Pesquisas Físicas; Brasil
description We analyze the thermodynamical consistency of entropic-force cosmological models. Our analysis is based on a generalized entropy scaling with an arbitrary power of the Hubble radius. The Bekenstein-Hawking entropy, proportional to the area, and the nonadditive Sδ=3/2-entropy, proportional to the volume, are particular cases. One of the points to be solved by entropic-force cosmology for being taken as a serious alternative to mainstream cosmology is to provide a physical principle that points out what entropy and temperature have to be used. We determine the temperature of the universe horizon by requiring that the Legendre structure of thermodynamics is preserved. We compare the performance of thermodynamically consistent entropic-force models with regard to the available supernovae data by providing appropriate constraints for optimizing alternative entropies and temperatures of the Hubble screen. Our results point out that the temperature differs from the Hawking one. The novelty of this work is that our analysis is based on a generalized entropy scaling with an arbitrary power of the Hubble radius, instead of a specific entropy. This allows us to conclude on various models at once, compare them, and conserve the scaling exponent as a parameter to be fitted with observational data, thus providing information about the form of the actual cosmological entropy and temperature. In addition, we point out that some entropic-force cosmological models previously available in the literature are not thermodynamically consistent. We provide here a physical principle which links the horizon temperature and entropy in consistency with thermodynamics.
publishDate 2022
dc.date.none.fl_str_mv 2022-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/161774
Zamora, Darío Javier; Tsallis, Constantino; Thermodynamically consistent entropic-force cosmology; Elsevier Science; Physics Letters B; 827; 136967; 4-2022; 1-6
0370-2693
CONICET Digital
CONICET
url http://hdl.handle.net/11336/161774
identifier_str_mv Zamora, Darío Javier; Tsallis, Constantino; Thermodynamically consistent entropic-force cosmology; Elsevier Science; Physics Letters B; 827; 136967; 4-2022; 1-6
0370-2693
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physletb.2022.136967
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0370269322001010
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082642086199296
score 13.22299