Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains
- Autores
- Feng, Min; Petek, Hrvoje; Shi, Yongliang; Sun, Hao; Zhao, Jin; Calaza, Florencia Carolina; Sterrer, Martin; Freund, Hans
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Effective CO2 capture and reduction can be achieved through a molecularscale understanding of interaction of CO2 molecules with chemically active sites and thecooperative effects they induce in functional materials. Self-assembled arrays of parallelchains composed of Au adatoms connected by 1,4-phenylene diisocyanide (PDI) linkersdecorating Au surfaces exhibit self-catalyzed CO2 capture leading to large scale surfacerestructuring at 77 K (ACS Nano 2014, 8, 86448652). We explore the cooperativeinteractions among CO2 molecules, Au-PDI chains and Au substrates that are responsiblefor the self-catalyzed capture by low temperature scanning tunneling microscopy (LTSTM),X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy(IRAS), temperature-programmed desorption (TPD), and dispersion corrected densityfunctional theory (DFT). Decorating Au surfaces with Au-PDI chains gives the interfacialmetalorganic polymer characteristics of both a homogeneous and heterogeneouscatalyst. Au-PDI chains activate the normally inert Au surfaces by promoting CO2 chemisorption at the Au adatom sites even at <20 K. The CO2 δ- speciescoordinating Au adatoms in-turn seed physisorption of CO2 molecules in highly ordered two-dimensional (2D) clusters, which grow with increasing dose to a fullmonolayer and, surprisingly, can be imaged withmolecular resolution on Au crystal terraces. The dispersion interactions with the substrate force the monolayerto assume a rhombic structure similar to a high-pressure CO2 crystalline solid rather than the cubic dry ice phase. The Au surface supported Au-PDI chains providea platform for investigating the physical and chemical interactions involved in CO2 capture and reduction.
Fil: Feng, Min. Chinese Academy Of Sciences; República de China. University Of Pittsburgh; Estados Unidos
Fil: Petek, Hrvoje. University of Pittsburgh; Estados Unidos
Fil: Shi, Yongliang. University of Science and Technology of China; China
Fil: Sun, Hao. University of Science and Technology of China; China
Fil: Zhao, Jin. University of Science and Technology of China; China
Fil: Calaza, Florencia Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina
Fil: Sterrer, Martin. Fritz-Haber-Institute der Max-Plank-Gesellschaft; Alemania
Fil: Freund, Hans. University Of Graz; Austria - Materia
-
Co2 . Co2 Δ- . Co2 Reduction . Co2 Cluster
Chemisorption Induced Physisorption
Metalorganic Chains
1,4-Phenylene Diisocyanide - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/9841
Ver los metadatos del registro completo
id |
CONICETDig_937f557968286180e25a02b6f715005f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/9841 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic ChainsFeng, MinPetek, HrvojeShi, YongliangSun, HaoZhao, JinCalaza, Florencia CarolinaSterrer, MartinFreund, HansCo2 . Co2 Δ- . Co2 Reduction . Co2 ClusterChemisorption Induced PhysisorptionMetalorganic Chains1,4-Phenylene Diisocyanidehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Effective CO2 capture and reduction can be achieved through a molecularscale understanding of interaction of CO2 molecules with chemically active sites and thecooperative effects they induce in functional materials. Self-assembled arrays of parallelchains composed of Au adatoms connected by 1,4-phenylene diisocyanide (PDI) linkersdecorating Au surfaces exhibit self-catalyzed CO2 capture leading to large scale surfacerestructuring at 77 K (ACS Nano 2014, 8, 86448652). We explore the cooperativeinteractions among CO2 molecules, Au-PDI chains and Au substrates that are responsiblefor the self-catalyzed capture by low temperature scanning tunneling microscopy (LTSTM),X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy(IRAS), temperature-programmed desorption (TPD), and dispersion corrected densityfunctional theory (DFT). Decorating Au surfaces with Au-PDI chains gives the interfacialmetalorganic polymer characteristics of both a homogeneous and heterogeneouscatalyst. Au-PDI chains activate the normally inert Au surfaces by promoting CO2 chemisorption at the Au adatom sites even at <20 K. The CO2 δ- speciescoordinating Au adatoms in-turn seed physisorption of CO2 molecules in highly ordered two-dimensional (2D) clusters, which grow with increasing dose to a fullmonolayer and, surprisingly, can be imaged withmolecular resolution on Au crystal terraces. The dispersion interactions with the substrate force the monolayerto assume a rhombic structure similar to a high-pressure CO2 crystalline solid rather than the cubic dry ice phase. The Au surface supported Au-PDI chains providea platform for investigating the physical and chemical interactions involved in CO2 capture and reduction.Fil: Feng, Min. Chinese Academy Of Sciences; República de China. University Of Pittsburgh; Estados UnidosFil: Petek, Hrvoje. University of Pittsburgh; Estados UnidosFil: Shi, Yongliang. University of Science and Technology of China; ChinaFil: Sun, Hao. University of Science and Technology of China; ChinaFil: Zhao, Jin. University of Science and Technology of China; ChinaFil: Calaza, Florencia Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaFil: Sterrer, Martin. Fritz-Haber-Institute der Max-Plank-Gesellschaft; AlemaniaFil: Freund, Hans. University Of Graz; AustriaAmerican Chemical Society2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9841Feng, Min; Petek, Hrvoje; Shi, Yongliang; Sun, Hao; Zhao, Jin; et al.; Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains; American Chemical Society; Acs Nano; 9; 11-2015; 12124-121361936-0851enginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/acsnano.5b05222info:eu-repo/semantics/altIdentifier/doi/10.1021/acsnano.5b05222info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:22Zoai:ri.conicet.gov.ar:11336/9841instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:23.11CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains |
title |
Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains |
spellingShingle |
Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains Feng, Min Co2 . Co2 Δ- . Co2 Reduction . Co2 Cluster Chemisorption Induced Physisorption Metalorganic Chains 1,4-Phenylene Diisocyanide |
title_short |
Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains |
title_full |
Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains |
title_fullStr |
Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains |
title_full_unstemmed |
Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains |
title_sort |
Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains |
dc.creator.none.fl_str_mv |
Feng, Min Petek, Hrvoje Shi, Yongliang Sun, Hao Zhao, Jin Calaza, Florencia Carolina Sterrer, Martin Freund, Hans |
author |
Feng, Min |
author_facet |
Feng, Min Petek, Hrvoje Shi, Yongliang Sun, Hao Zhao, Jin Calaza, Florencia Carolina Sterrer, Martin Freund, Hans |
author_role |
author |
author2 |
Petek, Hrvoje Shi, Yongliang Sun, Hao Zhao, Jin Calaza, Florencia Carolina Sterrer, Martin Freund, Hans |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Co2 . Co2 Δ- . Co2 Reduction . Co2 Cluster Chemisorption Induced Physisorption Metalorganic Chains 1,4-Phenylene Diisocyanide |
topic |
Co2 . Co2 Δ- . Co2 Reduction . Co2 Cluster Chemisorption Induced Physisorption Metalorganic Chains 1,4-Phenylene Diisocyanide |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Effective CO2 capture and reduction can be achieved through a molecularscale understanding of interaction of CO2 molecules with chemically active sites and thecooperative effects they induce in functional materials. Self-assembled arrays of parallelchains composed of Au adatoms connected by 1,4-phenylene diisocyanide (PDI) linkersdecorating Au surfaces exhibit self-catalyzed CO2 capture leading to large scale surfacerestructuring at 77 K (ACS Nano 2014, 8, 86448652). We explore the cooperativeinteractions among CO2 molecules, Au-PDI chains and Au substrates that are responsiblefor the self-catalyzed capture by low temperature scanning tunneling microscopy (LTSTM),X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy(IRAS), temperature-programmed desorption (TPD), and dispersion corrected densityfunctional theory (DFT). Decorating Au surfaces with Au-PDI chains gives the interfacialmetalorganic polymer characteristics of both a homogeneous and heterogeneouscatalyst. Au-PDI chains activate the normally inert Au surfaces by promoting CO2 chemisorption at the Au adatom sites even at <20 K. The CO2 δ- speciescoordinating Au adatoms in-turn seed physisorption of CO2 molecules in highly ordered two-dimensional (2D) clusters, which grow with increasing dose to a fullmonolayer and, surprisingly, can be imaged withmolecular resolution on Au crystal terraces. The dispersion interactions with the substrate force the monolayerto assume a rhombic structure similar to a high-pressure CO2 crystalline solid rather than the cubic dry ice phase. The Au surface supported Au-PDI chains providea platform for investigating the physical and chemical interactions involved in CO2 capture and reduction. Fil: Feng, Min. Chinese Academy Of Sciences; República de China. University Of Pittsburgh; Estados Unidos Fil: Petek, Hrvoje. University of Pittsburgh; Estados Unidos Fil: Shi, Yongliang. University of Science and Technology of China; China Fil: Sun, Hao. University of Science and Technology of China; China Fil: Zhao, Jin. University of Science and Technology of China; China Fil: Calaza, Florencia Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina Fil: Sterrer, Martin. Fritz-Haber-Institute der Max-Plank-Gesellschaft; Alemania Fil: Freund, Hans. University Of Graz; Austria |
description |
Effective CO2 capture and reduction can be achieved through a molecularscale understanding of interaction of CO2 molecules with chemically active sites and thecooperative effects they induce in functional materials. Self-assembled arrays of parallelchains composed of Au adatoms connected by 1,4-phenylene diisocyanide (PDI) linkersdecorating Au surfaces exhibit self-catalyzed CO2 capture leading to large scale surfacerestructuring at 77 K (ACS Nano 2014, 8, 86448652). We explore the cooperativeinteractions among CO2 molecules, Au-PDI chains and Au substrates that are responsiblefor the self-catalyzed capture by low temperature scanning tunneling microscopy (LTSTM),X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy(IRAS), temperature-programmed desorption (TPD), and dispersion corrected densityfunctional theory (DFT). Decorating Au surfaces with Au-PDI chains gives the interfacialmetalorganic polymer characteristics of both a homogeneous and heterogeneouscatalyst. Au-PDI chains activate the normally inert Au surfaces by promoting CO2 chemisorption at the Au adatom sites even at <20 K. The CO2 δ- speciescoordinating Au adatoms in-turn seed physisorption of CO2 molecules in highly ordered two-dimensional (2D) clusters, which grow with increasing dose to a fullmonolayer and, surprisingly, can be imaged withmolecular resolution on Au crystal terraces. The dispersion interactions with the substrate force the monolayerto assume a rhombic structure similar to a high-pressure CO2 crystalline solid rather than the cubic dry ice phase. The Au surface supported Au-PDI chains providea platform for investigating the physical and chemical interactions involved in CO2 capture and reduction. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/9841 Feng, Min; Petek, Hrvoje; Shi, Yongliang; Sun, Hao; Zhao, Jin; et al.; Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains; American Chemical Society; Acs Nano; 9; 11-2015; 12124-12136 1936-0851 |
url |
http://hdl.handle.net/11336/9841 |
identifier_str_mv |
Feng, Min; Petek, Hrvoje; Shi, Yongliang; Sun, Hao; Zhao, Jin; et al.; Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains; American Chemical Society; Acs Nano; 9; 11-2015; 12124-12136 1936-0851 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/acsnano.5b05222 info:eu-repo/semantics/altIdentifier/doi/10.1021/acsnano.5b05222 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613397079916544 |
score |
13.070432 |