Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains

Autores
Feng, Min; Petek, Hrvoje; Shi, Yongliang; Sun, Hao; Zhao, Jin; Calaza, Florencia Carolina; Sterrer, Martin; Freund, Hans
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Effective CO2 capture and reduction can be achieved through a molecularscale understanding of interaction of CO2 molecules with chemically active sites and thecooperative effects they induce in functional materials. Self-assembled arrays of parallelchains composed of Au adatoms connected by 1,4-phenylene diisocyanide (PDI) linkersdecorating Au surfaces exhibit self-catalyzed CO2 capture leading to large scale surfacerestructuring at 77 K (ACS Nano 2014, 8, 86448652). We explore the cooperativeinteractions among CO2 molecules, Au-PDI chains and Au substrates that are responsiblefor the self-catalyzed capture by low temperature scanning tunneling microscopy (LTSTM),X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy(IRAS), temperature-programmed desorption (TPD), and dispersion corrected densityfunctional theory (DFT). Decorating Au surfaces with Au-PDI chains gives the interfacialmetalorganic polymer characteristics of both a homogeneous and heterogeneouscatalyst. Au-PDI chains activate the normally inert Au surfaces by promoting CO2 chemisorption at the Au adatom sites even at <20 K. The CO2 δ- speciescoordinating Au adatoms in-turn seed physisorption of CO2 molecules in highly ordered two-dimensional (2D) clusters, which grow with increasing dose to a fullmonolayer and, surprisingly, can be imaged withmolecular resolution on Au crystal terraces. The dispersion interactions with the substrate force the monolayerto assume a rhombic structure similar to a high-pressure CO2 crystalline solid rather than the cubic dry ice phase. The Au surface supported Au-PDI chains providea platform for investigating the physical and chemical interactions involved in CO2 capture and reduction.
Fil: Feng, Min. Chinese Academy Of Sciences; República de China. University Of Pittsburgh; Estados Unidos
Fil: Petek, Hrvoje. University of Pittsburgh; Estados Unidos
Fil: Shi, Yongliang. University of Science and Technology of China; China
Fil: Sun, Hao. University of Science and Technology of China; China
Fil: Zhao, Jin. University of Science and Technology of China; China
Fil: Calaza, Florencia Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina
Fil: Sterrer, Martin. Fritz-Haber-Institute der Max-Plank-Gesellschaft; Alemania
Fil: Freund, Hans. University Of Graz; Austria
Materia
Co2 . Co2 Δ- . Co2 Reduction . Co2 Cluster
Chemisorption Induced Physisorption
Metalorganic Chains
1,4-Phenylene Diisocyanide
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/9841

id CONICETDig_937f557968286180e25a02b6f715005f
oai_identifier_str oai:ri.conicet.gov.ar:11336/9841
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic ChainsFeng, MinPetek, HrvojeShi, YongliangSun, HaoZhao, JinCalaza, Florencia CarolinaSterrer, MartinFreund, HansCo2 . Co2 Δ- . Co2 Reduction . Co2 ClusterChemisorption Induced PhysisorptionMetalorganic Chains1,4-Phenylene Diisocyanidehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Effective CO2 capture and reduction can be achieved through a molecularscale understanding of interaction of CO2 molecules with chemically active sites and thecooperative effects they induce in functional materials. Self-assembled arrays of parallelchains composed of Au adatoms connected by 1,4-phenylene diisocyanide (PDI) linkersdecorating Au surfaces exhibit self-catalyzed CO2 capture leading to large scale surfacerestructuring at 77 K (ACS Nano 2014, 8, 86448652). We explore the cooperativeinteractions among CO2 molecules, Au-PDI chains and Au substrates that are responsiblefor the self-catalyzed capture by low temperature scanning tunneling microscopy (LTSTM),X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy(IRAS), temperature-programmed desorption (TPD), and dispersion corrected densityfunctional theory (DFT). Decorating Au surfaces with Au-PDI chains gives the interfacialmetalorganic polymer characteristics of both a homogeneous and heterogeneouscatalyst. Au-PDI chains activate the normally inert Au surfaces by promoting CO2 chemisorption at the Au adatom sites even at <20 K. The CO2 δ- speciescoordinating Au adatoms in-turn seed physisorption of CO2 molecules in highly ordered two-dimensional (2D) clusters, which grow with increasing dose to a fullmonolayer and, surprisingly, can be imaged withmolecular resolution on Au crystal terraces. The dispersion interactions with the substrate force the monolayerto assume a rhombic structure similar to a high-pressure CO2 crystalline solid rather than the cubic dry ice phase. The Au surface supported Au-PDI chains providea platform for investigating the physical and chemical interactions involved in CO2 capture and reduction.Fil: Feng, Min. Chinese Academy Of Sciences; República de China. University Of Pittsburgh; Estados UnidosFil: Petek, Hrvoje. University of Pittsburgh; Estados UnidosFil: Shi, Yongliang. University of Science and Technology of China; ChinaFil: Sun, Hao. University of Science and Technology of China; ChinaFil: Zhao, Jin. University of Science and Technology of China; ChinaFil: Calaza, Florencia Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaFil: Sterrer, Martin. Fritz-Haber-Institute der Max-Plank-Gesellschaft; AlemaniaFil: Freund, Hans. University Of Graz; AustriaAmerican Chemical Society2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9841Feng, Min; Petek, Hrvoje; Shi, Yongliang; Sun, Hao; Zhao, Jin; et al.; Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains; American Chemical Society; Acs Nano; 9; 11-2015; 12124-121361936-0851enginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/acsnano.5b05222info:eu-repo/semantics/altIdentifier/doi/10.1021/acsnano.5b05222info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:22Zoai:ri.conicet.gov.ar:11336/9841instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:23.11CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains
title Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains
spellingShingle Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains
Feng, Min
Co2 . Co2 Δ- . Co2 Reduction . Co2 Cluster
Chemisorption Induced Physisorption
Metalorganic Chains
1,4-Phenylene Diisocyanide
title_short Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains
title_full Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains
title_fullStr Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains
title_full_unstemmed Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains
title_sort Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains
dc.creator.none.fl_str_mv Feng, Min
Petek, Hrvoje
Shi, Yongliang
Sun, Hao
Zhao, Jin
Calaza, Florencia Carolina
Sterrer, Martin
Freund, Hans
author Feng, Min
author_facet Feng, Min
Petek, Hrvoje
Shi, Yongliang
Sun, Hao
Zhao, Jin
Calaza, Florencia Carolina
Sterrer, Martin
Freund, Hans
author_role author
author2 Petek, Hrvoje
Shi, Yongliang
Sun, Hao
Zhao, Jin
Calaza, Florencia Carolina
Sterrer, Martin
Freund, Hans
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Co2 . Co2 Δ- . Co2 Reduction . Co2 Cluster
Chemisorption Induced Physisorption
Metalorganic Chains
1,4-Phenylene Diisocyanide
topic Co2 . Co2 Δ- . Co2 Reduction . Co2 Cluster
Chemisorption Induced Physisorption
Metalorganic Chains
1,4-Phenylene Diisocyanide
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Effective CO2 capture and reduction can be achieved through a molecularscale understanding of interaction of CO2 molecules with chemically active sites and thecooperative effects they induce in functional materials. Self-assembled arrays of parallelchains composed of Au adatoms connected by 1,4-phenylene diisocyanide (PDI) linkersdecorating Au surfaces exhibit self-catalyzed CO2 capture leading to large scale surfacerestructuring at 77 K (ACS Nano 2014, 8, 86448652). We explore the cooperativeinteractions among CO2 molecules, Au-PDI chains and Au substrates that are responsiblefor the self-catalyzed capture by low temperature scanning tunneling microscopy (LTSTM),X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy(IRAS), temperature-programmed desorption (TPD), and dispersion corrected densityfunctional theory (DFT). Decorating Au surfaces with Au-PDI chains gives the interfacialmetalorganic polymer characteristics of both a homogeneous and heterogeneouscatalyst. Au-PDI chains activate the normally inert Au surfaces by promoting CO2 chemisorption at the Au adatom sites even at <20 K. The CO2 δ- speciescoordinating Au adatoms in-turn seed physisorption of CO2 molecules in highly ordered two-dimensional (2D) clusters, which grow with increasing dose to a fullmonolayer and, surprisingly, can be imaged withmolecular resolution on Au crystal terraces. The dispersion interactions with the substrate force the monolayerto assume a rhombic structure similar to a high-pressure CO2 crystalline solid rather than the cubic dry ice phase. The Au surface supported Au-PDI chains providea platform for investigating the physical and chemical interactions involved in CO2 capture and reduction.
Fil: Feng, Min. Chinese Academy Of Sciences; República de China. University Of Pittsburgh; Estados Unidos
Fil: Petek, Hrvoje. University of Pittsburgh; Estados Unidos
Fil: Shi, Yongliang. University of Science and Technology of China; China
Fil: Sun, Hao. University of Science and Technology of China; China
Fil: Zhao, Jin. University of Science and Technology of China; China
Fil: Calaza, Florencia Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina
Fil: Sterrer, Martin. Fritz-Haber-Institute der Max-Plank-Gesellschaft; Alemania
Fil: Freund, Hans. University Of Graz; Austria
description Effective CO2 capture and reduction can be achieved through a molecularscale understanding of interaction of CO2 molecules with chemically active sites and thecooperative effects they induce in functional materials. Self-assembled arrays of parallelchains composed of Au adatoms connected by 1,4-phenylene diisocyanide (PDI) linkersdecorating Au surfaces exhibit self-catalyzed CO2 capture leading to large scale surfacerestructuring at 77 K (ACS Nano 2014, 8, 86448652). We explore the cooperativeinteractions among CO2 molecules, Au-PDI chains and Au substrates that are responsiblefor the self-catalyzed capture by low temperature scanning tunneling microscopy (LTSTM),X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy(IRAS), temperature-programmed desorption (TPD), and dispersion corrected densityfunctional theory (DFT). Decorating Au surfaces with Au-PDI chains gives the interfacialmetalorganic polymer characteristics of both a homogeneous and heterogeneouscatalyst. Au-PDI chains activate the normally inert Au surfaces by promoting CO2 chemisorption at the Au adatom sites even at <20 K. The CO2 δ- speciescoordinating Au adatoms in-turn seed physisorption of CO2 molecules in highly ordered two-dimensional (2D) clusters, which grow with increasing dose to a fullmonolayer and, surprisingly, can be imaged withmolecular resolution on Au crystal terraces. The dispersion interactions with the substrate force the monolayerto assume a rhombic structure similar to a high-pressure CO2 crystalline solid rather than the cubic dry ice phase. The Au surface supported Au-PDI chains providea platform for investigating the physical and chemical interactions involved in CO2 capture and reduction.
publishDate 2015
dc.date.none.fl_str_mv 2015-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/9841
Feng, Min; Petek, Hrvoje; Shi, Yongliang; Sun, Hao; Zhao, Jin; et al.; Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains; American Chemical Society; Acs Nano; 9; 11-2015; 12124-12136
1936-0851
url http://hdl.handle.net/11336/9841
identifier_str_mv Feng, Min; Petek, Hrvoje; Shi, Yongliang; Sun, Hao; Zhao, Jin; et al.; Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains; American Chemical Society; Acs Nano; 9; 11-2015; 12124-12136
1936-0851
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/acsnano.5b05222
info:eu-repo/semantics/altIdentifier/doi/10.1021/acsnano.5b05222
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613397079916544
score 13.070432