Low-Complexity Channel Prediction Using Approximated Recursive DCT
- Autores
- Schmidt, Jorge Friedrich; Cousseau, Juan Edmundo; Wichman, Risto Ilari; Werner, Stefan
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a novel channel estimator/predictor for OFDM systems over time-varying channels using a recursive formulation of a basis expansion model (BEM) based on an approximated discrete cosine transform (DCT). We derive a recursive implementation of the approximated DCT-BEM for tracking time-varying channels based on a filter bank. The recursive approximated DCT-BEM structure is then used for long range channel prediction by proper scaling and time extrapolation of the filter bank. As the implicit BEM is time invariant we further simplify the implementation by employing a steady-state Kalman filter whose overall complexity is comparable to an LMS algorithm. The derived predictor outperforms, in terms of predictor range, previously proposed long range predictors that are based on autoregressive (AR) modeling of the time-varying channel. For a similar performance, in terms of MSE, the computational complexity of the proposed predictor is significantly lower than conventional sum-of-sinusoids (SOS) channel predictors as no channel delays nor Doppler frequencies need to be estimated.
Fil: Schmidt, Jorge Friedrich. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Wichman, Risto Ilari. Aalto University; Finlandia
Fil: Werner, Stefan. Aalto University; Finlandia - Materia
-
Channel prediction
Discrete cosine transform
Basis function approximation
Doppler spectrum - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/102250
Ver los metadatos del registro completo
id |
CONICETDig_93426146d74adb8c20b80b4d95c0a5d7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/102250 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Low-Complexity Channel Prediction Using Approximated Recursive DCTSchmidt, Jorge FriedrichCousseau, Juan EdmundoWichman, Risto IlariWerner, StefanChannel predictionDiscrete cosine transformBasis function approximationDoppler spectrumhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2We present a novel channel estimator/predictor for OFDM systems over time-varying channels using a recursive formulation of a basis expansion model (BEM) based on an approximated discrete cosine transform (DCT). We derive a recursive implementation of the approximated DCT-BEM for tracking time-varying channels based on a filter bank. The recursive approximated DCT-BEM structure is then used for long range channel prediction by proper scaling and time extrapolation of the filter bank. As the implicit BEM is time invariant we further simplify the implementation by employing a steady-state Kalman filter whose overall complexity is comparable to an LMS algorithm. The derived predictor outperforms, in terms of predictor range, previously proposed long range predictors that are based on autoregressive (AR) modeling of the time-varying channel. For a similar performance, in terms of MSE, the computational complexity of the proposed predictor is significantly lower than conventional sum-of-sinusoids (SOS) channel predictors as no channel delays nor Doppler frequencies need to be estimated.Fil: Schmidt, Jorge Friedrich. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Wichman, Risto Ilari. Aalto University; FinlandiaFil: Werner, Stefan. Aalto University; FinlandiaInstitute of Electrical and Electronics Engineers2011-07-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/102250Schmidt, Jorge Friedrich; Cousseau, Juan Edmundo; Wichman, Risto Ilari; Werner, Stefan; Low-Complexity Channel Prediction Using Approximated Recursive DCT; Institute of Electrical and Electronics Engineers; IEEE Transactions On Circuits And Systems I-regular Papers; 58; 10; 14-7-2011; 2520-25301549-8328CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/5951808info:eu-repo/semantics/altIdentifier/doi/10.1109/TCSI.2011.2158139info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:06Zoai:ri.conicet.gov.ar:11336/102250instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:07.264CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Low-Complexity Channel Prediction Using Approximated Recursive DCT |
title |
Low-Complexity Channel Prediction Using Approximated Recursive DCT |
spellingShingle |
Low-Complexity Channel Prediction Using Approximated Recursive DCT Schmidt, Jorge Friedrich Channel prediction Discrete cosine transform Basis function approximation Doppler spectrum |
title_short |
Low-Complexity Channel Prediction Using Approximated Recursive DCT |
title_full |
Low-Complexity Channel Prediction Using Approximated Recursive DCT |
title_fullStr |
Low-Complexity Channel Prediction Using Approximated Recursive DCT |
title_full_unstemmed |
Low-Complexity Channel Prediction Using Approximated Recursive DCT |
title_sort |
Low-Complexity Channel Prediction Using Approximated Recursive DCT |
dc.creator.none.fl_str_mv |
Schmidt, Jorge Friedrich Cousseau, Juan Edmundo Wichman, Risto Ilari Werner, Stefan |
author |
Schmidt, Jorge Friedrich |
author_facet |
Schmidt, Jorge Friedrich Cousseau, Juan Edmundo Wichman, Risto Ilari Werner, Stefan |
author_role |
author |
author2 |
Cousseau, Juan Edmundo Wichman, Risto Ilari Werner, Stefan |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Channel prediction Discrete cosine transform Basis function approximation Doppler spectrum |
topic |
Channel prediction Discrete cosine transform Basis function approximation Doppler spectrum |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
We present a novel channel estimator/predictor for OFDM systems over time-varying channels using a recursive formulation of a basis expansion model (BEM) based on an approximated discrete cosine transform (DCT). We derive a recursive implementation of the approximated DCT-BEM for tracking time-varying channels based on a filter bank. The recursive approximated DCT-BEM structure is then used for long range channel prediction by proper scaling and time extrapolation of the filter bank. As the implicit BEM is time invariant we further simplify the implementation by employing a steady-state Kalman filter whose overall complexity is comparable to an LMS algorithm. The derived predictor outperforms, in terms of predictor range, previously proposed long range predictors that are based on autoregressive (AR) modeling of the time-varying channel. For a similar performance, in terms of MSE, the computational complexity of the proposed predictor is significantly lower than conventional sum-of-sinusoids (SOS) channel predictors as no channel delays nor Doppler frequencies need to be estimated. Fil: Schmidt, Jorge Friedrich. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina Fil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina Fil: Wichman, Risto Ilari. Aalto University; Finlandia Fil: Werner, Stefan. Aalto University; Finlandia |
description |
We present a novel channel estimator/predictor for OFDM systems over time-varying channels using a recursive formulation of a basis expansion model (BEM) based on an approximated discrete cosine transform (DCT). We derive a recursive implementation of the approximated DCT-BEM for tracking time-varying channels based on a filter bank. The recursive approximated DCT-BEM structure is then used for long range channel prediction by proper scaling and time extrapolation of the filter bank. As the implicit BEM is time invariant we further simplify the implementation by employing a steady-state Kalman filter whose overall complexity is comparable to an LMS algorithm. The derived predictor outperforms, in terms of predictor range, previously proposed long range predictors that are based on autoregressive (AR) modeling of the time-varying channel. For a similar performance, in terms of MSE, the computational complexity of the proposed predictor is significantly lower than conventional sum-of-sinusoids (SOS) channel predictors as no channel delays nor Doppler frequencies need to be estimated. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-07-14 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/102250 Schmidt, Jorge Friedrich; Cousseau, Juan Edmundo; Wichman, Risto Ilari; Werner, Stefan; Low-Complexity Channel Prediction Using Approximated Recursive DCT; Institute of Electrical and Electronics Engineers; IEEE Transactions On Circuits And Systems I-regular Papers; 58; 10; 14-7-2011; 2520-2530 1549-8328 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/102250 |
identifier_str_mv |
Schmidt, Jorge Friedrich; Cousseau, Juan Edmundo; Wichman, Risto Ilari; Werner, Stefan; Low-Complexity Channel Prediction Using Approximated Recursive DCT; Institute of Electrical and Electronics Engineers; IEEE Transactions On Circuits And Systems I-regular Papers; 58; 10; 14-7-2011; 2520-2530 1549-8328 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/5951808 info:eu-repo/semantics/altIdentifier/doi/10.1109/TCSI.2011.2158139 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269325419872256 |
score |
13.13397 |