Sequence-specific DNA binding by noncovalent peptide–azocyclodextrin dimer complex as a suitable model for conformational fuzziness

Autores
Quirolo, Zulma Beatriz; Sequeira, María Alejandra; Martins, José C.; Dodero, Veronica Isabel
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Transcription factors are proteins lying at the endpoint of signaling pathways that control the complex process of DNA transcription. Typically, they are structurally disordered in the inactive state, but in response to an external stimulus, like a suitable ligand, they change their conformation, thereby activating DNA transcription in a spatiotemporal fashion. The observed disorder or fuzziness is functionally beneficial because it can add adaptability, versatility, and reversibility to the interaction. In this context, mimetics of the basic region of the GCN4 transcription factor (Tf) and their interaction with dsDNA sequences would be suitable models to explore the concept of conformational fuzziness experimentally. Herein, we present the first example of a system that mimics the DNA sequence-specific recognition by the GCN4 Tf through the formation of a non- covalent tetra-component complex: peptide–azoβ-CyD(dimer)–peptide–DNA. The non-covalent complex is constructed on the one hand by a 30 amino acid peptide corresponding to the basic region of GCN4 and functionalized with an adamantane moiety, and on the other hand an allosteric receptor, the azoCyDdimer, that has an azobenzene linker connecting two β-cyclodextrin units. The azoCyDdimer responds to light stimulus, existing as two photo-states: the first thermodynamically stable with an E:Z isomer ratio of 95:5 and the second obtained after irradiation with ultraviolet light, resulting in a photostationary state with a 60:40 E:Z ratio. Through electrophoretic shift assays and circular dichroism spectroscopy, we demonstrate that the E isomer is responsible for dimerization and recognition. The formation of the non-covalent tetra component complex occurs in the presence of the GCN4 cognate dsDNA sequence (′5-..ATGA cg TCAT..-3′) but not with (′5-..ATGA c TCAT..-3′) that differs in only one spacing nucleotide. Thus, we demonstrated that the tetra-component complex is formed in a specific manner that depends on the geometry of the ligand, the peptide length, and the ds DNA sequence. We hypothesized that the mechanism of interaction is sequential, and it can be described by the polymorphism model of static fuzziness. We argue that chemically modified peptides of the GCN4 Tf are suitable minimalist experimental models to investigate conformational fuzziness in protein–DNA interactions.
Fil: Quirolo, Zulma Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Sequeira, María Alejandra. Universidad Nacional del Sur; Argentina
Fil: Martins, José C.. University of Ghent; Bélgica
Fil: Dodero, Veronica Isabel. Universitat Bielefeld; Alemania. Universidad Nacional del Sur. Departamento de Química; Argentina
Materia
CONFORMATIONAL FUZZINESS
E:Z PHOTOISOMERIZATION
GCN4 MIMETIC
PEPTIDES–DNA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/111340

id CONICETDig_9321429af2909dba0d887a081b4797a1
oai_identifier_str oai:ri.conicet.gov.ar:11336/111340
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Sequence-specific DNA binding by noncovalent peptide–azocyclodextrin dimer complex as a suitable model for conformational fuzzinessQuirolo, Zulma BeatrizSequeira, María AlejandraMartins, José C.Dodero, Veronica IsabelCONFORMATIONAL FUZZINESSE:Z PHOTOISOMERIZATIONGCN4 MIMETICPEPTIDES–DNAhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Transcription factors are proteins lying at the endpoint of signaling pathways that control the complex process of DNA transcription. Typically, they are structurally disordered in the inactive state, but in response to an external stimulus, like a suitable ligand, they change their conformation, thereby activating DNA transcription in a spatiotemporal fashion. The observed disorder or fuzziness is functionally beneficial because it can add adaptability, versatility, and reversibility to the interaction. In this context, mimetics of the basic region of the GCN4 transcription factor (Tf) and their interaction with dsDNA sequences would be suitable models to explore the concept of conformational fuzziness experimentally. Herein, we present the first example of a system that mimics the DNA sequence-specific recognition by the GCN4 Tf through the formation of a non- covalent tetra-component complex: peptide–azoβ-CyD(dimer)–peptide–DNA. The non-covalent complex is constructed on the one hand by a 30 amino acid peptide corresponding to the basic region of GCN4 and functionalized with an adamantane moiety, and on the other hand an allosteric receptor, the azoCyDdimer, that has an azobenzene linker connecting two β-cyclodextrin units. The azoCyDdimer responds to light stimulus, existing as two photo-states: the first thermodynamically stable with an E:Z isomer ratio of 95:5 and the second obtained after irradiation with ultraviolet light, resulting in a photostationary state with a 60:40 E:Z ratio. Through electrophoretic shift assays and circular dichroism spectroscopy, we demonstrate that the E isomer is responsible for dimerization and recognition. The formation of the non-covalent tetra component complex occurs in the presence of the GCN4 cognate dsDNA sequence (′5-..ATGA cg TCAT..-3′) but not with (′5-..ATGA c TCAT..-3′) that differs in only one spacing nucleotide. Thus, we demonstrated that the tetra-component complex is formed in a specific manner that depends on the geometry of the ligand, the peptide length, and the ds DNA sequence. We hypothesized that the mechanism of interaction is sequential, and it can be described by the polymorphism model of static fuzziness. We argue that chemically modified peptides of the GCN4 Tf are suitable minimalist experimental models to investigate conformational fuzziness in protein–DNA interactions.Fil: Quirolo, Zulma Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Sequeira, María Alejandra. Universidad Nacional del Sur; ArgentinaFil: Martins, José C.. University of Ghent; BélgicaFil: Dodero, Veronica Isabel. Universitat Bielefeld; Alemania. Universidad Nacional del Sur. Departamento de Química; ArgentinaMolecular Diversity Preservation International2019-07-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/111340Quirolo, Zulma Beatriz; Sequeira, María Alejandra; Martins, José C.; Dodero, Veronica Isabel; Sequence-specific DNA binding by noncovalent peptide–azocyclodextrin dimer complex as a suitable model for conformational fuzziness; Molecular Diversity Preservation International; Molecules; 24; 13; 9-7-2019; 2508-25281420-3049CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/molecules24132508info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1420-3049/24/13/2508info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:11:40Zoai:ri.conicet.gov.ar:11336/111340instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:11:40.579CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Sequence-specific DNA binding by noncovalent peptide–azocyclodextrin dimer complex as a suitable model for conformational fuzziness
title Sequence-specific DNA binding by noncovalent peptide–azocyclodextrin dimer complex as a suitable model for conformational fuzziness
spellingShingle Sequence-specific DNA binding by noncovalent peptide–azocyclodextrin dimer complex as a suitable model for conformational fuzziness
Quirolo, Zulma Beatriz
CONFORMATIONAL FUZZINESS
E:Z PHOTOISOMERIZATION
GCN4 MIMETIC
PEPTIDES–DNA
title_short Sequence-specific DNA binding by noncovalent peptide–azocyclodextrin dimer complex as a suitable model for conformational fuzziness
title_full Sequence-specific DNA binding by noncovalent peptide–azocyclodextrin dimer complex as a suitable model for conformational fuzziness
title_fullStr Sequence-specific DNA binding by noncovalent peptide–azocyclodextrin dimer complex as a suitable model for conformational fuzziness
title_full_unstemmed Sequence-specific DNA binding by noncovalent peptide–azocyclodextrin dimer complex as a suitable model for conformational fuzziness
title_sort Sequence-specific DNA binding by noncovalent peptide–azocyclodextrin dimer complex as a suitable model for conformational fuzziness
dc.creator.none.fl_str_mv Quirolo, Zulma Beatriz
Sequeira, María Alejandra
Martins, José C.
Dodero, Veronica Isabel
author Quirolo, Zulma Beatriz
author_facet Quirolo, Zulma Beatriz
Sequeira, María Alejandra
Martins, José C.
Dodero, Veronica Isabel
author_role author
author2 Sequeira, María Alejandra
Martins, José C.
Dodero, Veronica Isabel
author2_role author
author
author
dc.subject.none.fl_str_mv CONFORMATIONAL FUZZINESS
E:Z PHOTOISOMERIZATION
GCN4 MIMETIC
PEPTIDES–DNA
topic CONFORMATIONAL FUZZINESS
E:Z PHOTOISOMERIZATION
GCN4 MIMETIC
PEPTIDES–DNA
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Transcription factors are proteins lying at the endpoint of signaling pathways that control the complex process of DNA transcription. Typically, they are structurally disordered in the inactive state, but in response to an external stimulus, like a suitable ligand, they change their conformation, thereby activating DNA transcription in a spatiotemporal fashion. The observed disorder or fuzziness is functionally beneficial because it can add adaptability, versatility, and reversibility to the interaction. In this context, mimetics of the basic region of the GCN4 transcription factor (Tf) and their interaction with dsDNA sequences would be suitable models to explore the concept of conformational fuzziness experimentally. Herein, we present the first example of a system that mimics the DNA sequence-specific recognition by the GCN4 Tf through the formation of a non- covalent tetra-component complex: peptide–azoβ-CyD(dimer)–peptide–DNA. The non-covalent complex is constructed on the one hand by a 30 amino acid peptide corresponding to the basic region of GCN4 and functionalized with an adamantane moiety, and on the other hand an allosteric receptor, the azoCyDdimer, that has an azobenzene linker connecting two β-cyclodextrin units. The azoCyDdimer responds to light stimulus, existing as two photo-states: the first thermodynamically stable with an E:Z isomer ratio of 95:5 and the second obtained after irradiation with ultraviolet light, resulting in a photostationary state with a 60:40 E:Z ratio. Through electrophoretic shift assays and circular dichroism spectroscopy, we demonstrate that the E isomer is responsible for dimerization and recognition. The formation of the non-covalent tetra component complex occurs in the presence of the GCN4 cognate dsDNA sequence (′5-..ATGA cg TCAT..-3′) but not with (′5-..ATGA c TCAT..-3′) that differs in only one spacing nucleotide. Thus, we demonstrated that the tetra-component complex is formed in a specific manner that depends on the geometry of the ligand, the peptide length, and the ds DNA sequence. We hypothesized that the mechanism of interaction is sequential, and it can be described by the polymorphism model of static fuzziness. We argue that chemically modified peptides of the GCN4 Tf are suitable minimalist experimental models to investigate conformational fuzziness in protein–DNA interactions.
Fil: Quirolo, Zulma Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Sequeira, María Alejandra. Universidad Nacional del Sur; Argentina
Fil: Martins, José C.. University of Ghent; Bélgica
Fil: Dodero, Veronica Isabel. Universitat Bielefeld; Alemania. Universidad Nacional del Sur. Departamento de Química; Argentina
description Transcription factors are proteins lying at the endpoint of signaling pathways that control the complex process of DNA transcription. Typically, they are structurally disordered in the inactive state, but in response to an external stimulus, like a suitable ligand, they change their conformation, thereby activating DNA transcription in a spatiotemporal fashion. The observed disorder or fuzziness is functionally beneficial because it can add adaptability, versatility, and reversibility to the interaction. In this context, mimetics of the basic region of the GCN4 transcription factor (Tf) and their interaction with dsDNA sequences would be suitable models to explore the concept of conformational fuzziness experimentally. Herein, we present the first example of a system that mimics the DNA sequence-specific recognition by the GCN4 Tf through the formation of a non- covalent tetra-component complex: peptide–azoβ-CyD(dimer)–peptide–DNA. The non-covalent complex is constructed on the one hand by a 30 amino acid peptide corresponding to the basic region of GCN4 and functionalized with an adamantane moiety, and on the other hand an allosteric receptor, the azoCyDdimer, that has an azobenzene linker connecting two β-cyclodextrin units. The azoCyDdimer responds to light stimulus, existing as two photo-states: the first thermodynamically stable with an E:Z isomer ratio of 95:5 and the second obtained after irradiation with ultraviolet light, resulting in a photostationary state with a 60:40 E:Z ratio. Through electrophoretic shift assays and circular dichroism spectroscopy, we demonstrate that the E isomer is responsible for dimerization and recognition. The formation of the non-covalent tetra component complex occurs in the presence of the GCN4 cognate dsDNA sequence (′5-..ATGA cg TCAT..-3′) but not with (′5-..ATGA c TCAT..-3′) that differs in only one spacing nucleotide. Thus, we demonstrated that the tetra-component complex is formed in a specific manner that depends on the geometry of the ligand, the peptide length, and the ds DNA sequence. We hypothesized that the mechanism of interaction is sequential, and it can be described by the polymorphism model of static fuzziness. We argue that chemically modified peptides of the GCN4 Tf are suitable minimalist experimental models to investigate conformational fuzziness in protein–DNA interactions.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/111340
Quirolo, Zulma Beatriz; Sequeira, María Alejandra; Martins, José C.; Dodero, Veronica Isabel; Sequence-specific DNA binding by noncovalent peptide–azocyclodextrin dimer complex as a suitable model for conformational fuzziness; Molecular Diversity Preservation International; Molecules; 24; 13; 9-7-2019; 2508-2528
1420-3049
CONICET Digital
CONICET
url http://hdl.handle.net/11336/111340
identifier_str_mv Quirolo, Zulma Beatriz; Sequeira, María Alejandra; Martins, José C.; Dodero, Veronica Isabel; Sequence-specific DNA binding by noncovalent peptide–azocyclodextrin dimer complex as a suitable model for conformational fuzziness; Molecular Diversity Preservation International; Molecules; 24; 13; 9-7-2019; 2508-2528
1420-3049
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3390/molecules24132508
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1420-3049/24/13/2508
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Molecular Diversity Preservation International
publisher.none.fl_str_mv Molecular Diversity Preservation International
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781498116538368
score 12.982451