Effect of quantum tunneling on the efficiency of excitation energy transfer in plasmonic nanoparticle chain waveguides

Autores
Ilawe, Niranjan V.; Oviedo, María Belén; Wong, Bryan M.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a detailed analysis of the electronic couplings that mediate excitation energy transfer (EET) in plasmonic nanoantenna systems using large-scale quantum dynamical calculations. To capture the intricate electronic interactions in these large systems, we utilize a real-time, time-dependent, density functional tight binding (RT-TDDFTB) approach to characterize the quantum-mechanical efficiency of EET in plasmonic nanoparticle chains with subnanometer interparticle spacings. In contrast to classical electrodynamics methods, our quantum dynamical calculations do not predict a monotonic increase in EET efficiency with a decrease in interparticle spacing between the nanoparticles of the nanoantenna. Most notably, we show a sudden drop in EET efficiencies as the interparticle distance approaches subnanometer length scales within the nanoparticle chain. We attribute this drop in EET efficiency to the onset of quantum charge tunneling between the nanoparticles of the chain which, in turn, changes the nature of the electronic couplings between them. We further characterize this abrupt change in EET efficiency through visualizations of both the spatial and time-dependent charge distributions within the nanoantenna, which provide an intuitive classification of the various types of electronic excitations in these plasmonic systems. Finally, while the use of classical electrodynamics methods have long been used to characterize complex plasmonic systems, our findings demonstrate that quantum-mechanical effects can result in qualitatively different (and sometimes completely opposite) results that are essential for accurately calculating EET mechanisms and efficiencies in these systems.
Fil: Ilawe, Niranjan V.. University Of California Riverside; Estados Unidos
Fil: Oviedo, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Cs.químicas. Departamento de Química Teórica y Computacional; Argentina
Fil: Wong, Bryan M.. University Of California Riverside; Estados Unidos
Materia
ENERGY TRANSFER
PLASMON
QUANTUM DYNAMICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/90785

id CONICETDig_930f0e7dc7182271de976355fcab969e
oai_identifier_str oai:ri.conicet.gov.ar:11336/90785
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effect of quantum tunneling on the efficiency of excitation energy transfer in plasmonic nanoparticle chain waveguidesIlawe, Niranjan V.Oviedo, María BelénWong, Bryan M.ENERGY TRANSFERPLASMONQUANTUM DYNAMICShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a detailed analysis of the electronic couplings that mediate excitation energy transfer (EET) in plasmonic nanoantenna systems using large-scale quantum dynamical calculations. To capture the intricate electronic interactions in these large systems, we utilize a real-time, time-dependent, density functional tight binding (RT-TDDFTB) approach to characterize the quantum-mechanical efficiency of EET in plasmonic nanoparticle chains with subnanometer interparticle spacings. In contrast to classical electrodynamics methods, our quantum dynamical calculations do not predict a monotonic increase in EET efficiency with a decrease in interparticle spacing between the nanoparticles of the nanoantenna. Most notably, we show a sudden drop in EET efficiencies as the interparticle distance approaches subnanometer length scales within the nanoparticle chain. We attribute this drop in EET efficiency to the onset of quantum charge tunneling between the nanoparticles of the chain which, in turn, changes the nature of the electronic couplings between them. We further characterize this abrupt change in EET efficiency through visualizations of both the spatial and time-dependent charge distributions within the nanoantenna, which provide an intuitive classification of the various types of electronic excitations in these plasmonic systems. Finally, while the use of classical electrodynamics methods have long been used to characterize complex plasmonic systems, our findings demonstrate that quantum-mechanical effects can result in qualitatively different (and sometimes completely opposite) results that are essential for accurately calculating EET mechanisms and efficiencies in these systems.Fil: Ilawe, Niranjan V.. University Of California Riverside; Estados UnidosFil: Oviedo, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Cs.químicas. Departamento de Química Teórica y Computacional; ArgentinaFil: Wong, Bryan M.. University Of California Riverside; Estados UnidosRoyal Society of Chemistry2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/90785Ilawe, Niranjan V.; Oviedo, María Belén; Wong, Bryan M.; Effect of quantum tunneling on the efficiency of excitation energy transfer in plasmonic nanoparticle chain waveguides; Royal Society of Chemistry; Journal of Materials Chemistry C; 6; 22; 5-2018; 5857-58642050-7526CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://xlink.rsc.org/?DOI=C8TC01466Cinfo:eu-repo/semantics/altIdentifier/doi/10.1039/C8TC01466Cinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:47:15Zoai:ri.conicet.gov.ar:11336/90785instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:47:15.834CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effect of quantum tunneling on the efficiency of excitation energy transfer in plasmonic nanoparticle chain waveguides
title Effect of quantum tunneling on the efficiency of excitation energy transfer in plasmonic nanoparticle chain waveguides
spellingShingle Effect of quantum tunneling on the efficiency of excitation energy transfer in plasmonic nanoparticle chain waveguides
Ilawe, Niranjan V.
ENERGY TRANSFER
PLASMON
QUANTUM DYNAMICS
title_short Effect of quantum tunneling on the efficiency of excitation energy transfer in plasmonic nanoparticle chain waveguides
title_full Effect of quantum tunneling on the efficiency of excitation energy transfer in plasmonic nanoparticle chain waveguides
title_fullStr Effect of quantum tunneling on the efficiency of excitation energy transfer in plasmonic nanoparticle chain waveguides
title_full_unstemmed Effect of quantum tunneling on the efficiency of excitation energy transfer in plasmonic nanoparticle chain waveguides
title_sort Effect of quantum tunneling on the efficiency of excitation energy transfer in plasmonic nanoparticle chain waveguides
dc.creator.none.fl_str_mv Ilawe, Niranjan V.
Oviedo, María Belén
Wong, Bryan M.
author Ilawe, Niranjan V.
author_facet Ilawe, Niranjan V.
Oviedo, María Belén
Wong, Bryan M.
author_role author
author2 Oviedo, María Belén
Wong, Bryan M.
author2_role author
author
dc.subject.none.fl_str_mv ENERGY TRANSFER
PLASMON
QUANTUM DYNAMICS
topic ENERGY TRANSFER
PLASMON
QUANTUM DYNAMICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a detailed analysis of the electronic couplings that mediate excitation energy transfer (EET) in plasmonic nanoantenna systems using large-scale quantum dynamical calculations. To capture the intricate electronic interactions in these large systems, we utilize a real-time, time-dependent, density functional tight binding (RT-TDDFTB) approach to characterize the quantum-mechanical efficiency of EET in plasmonic nanoparticle chains with subnanometer interparticle spacings. In contrast to classical electrodynamics methods, our quantum dynamical calculations do not predict a monotonic increase in EET efficiency with a decrease in interparticle spacing between the nanoparticles of the nanoantenna. Most notably, we show a sudden drop in EET efficiencies as the interparticle distance approaches subnanometer length scales within the nanoparticle chain. We attribute this drop in EET efficiency to the onset of quantum charge tunneling between the nanoparticles of the chain which, in turn, changes the nature of the electronic couplings between them. We further characterize this abrupt change in EET efficiency through visualizations of both the spatial and time-dependent charge distributions within the nanoantenna, which provide an intuitive classification of the various types of electronic excitations in these plasmonic systems. Finally, while the use of classical electrodynamics methods have long been used to characterize complex plasmonic systems, our findings demonstrate that quantum-mechanical effects can result in qualitatively different (and sometimes completely opposite) results that are essential for accurately calculating EET mechanisms and efficiencies in these systems.
Fil: Ilawe, Niranjan V.. University Of California Riverside; Estados Unidos
Fil: Oviedo, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Cs.químicas. Departamento de Química Teórica y Computacional; Argentina
Fil: Wong, Bryan M.. University Of California Riverside; Estados Unidos
description We present a detailed analysis of the electronic couplings that mediate excitation energy transfer (EET) in plasmonic nanoantenna systems using large-scale quantum dynamical calculations. To capture the intricate electronic interactions in these large systems, we utilize a real-time, time-dependent, density functional tight binding (RT-TDDFTB) approach to characterize the quantum-mechanical efficiency of EET in plasmonic nanoparticle chains with subnanometer interparticle spacings. In contrast to classical electrodynamics methods, our quantum dynamical calculations do not predict a monotonic increase in EET efficiency with a decrease in interparticle spacing between the nanoparticles of the nanoantenna. Most notably, we show a sudden drop in EET efficiencies as the interparticle distance approaches subnanometer length scales within the nanoparticle chain. We attribute this drop in EET efficiency to the onset of quantum charge tunneling between the nanoparticles of the chain which, in turn, changes the nature of the electronic couplings between them. We further characterize this abrupt change in EET efficiency through visualizations of both the spatial and time-dependent charge distributions within the nanoantenna, which provide an intuitive classification of the various types of electronic excitations in these plasmonic systems. Finally, while the use of classical electrodynamics methods have long been used to characterize complex plasmonic systems, our findings demonstrate that quantum-mechanical effects can result in qualitatively different (and sometimes completely opposite) results that are essential for accurately calculating EET mechanisms and efficiencies in these systems.
publishDate 2018
dc.date.none.fl_str_mv 2018-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/90785
Ilawe, Niranjan V.; Oviedo, María Belén; Wong, Bryan M.; Effect of quantum tunneling on the efficiency of excitation energy transfer in plasmonic nanoparticle chain waveguides; Royal Society of Chemistry; Journal of Materials Chemistry C; 6; 22; 5-2018; 5857-5864
2050-7526
CONICET Digital
CONICET
url http://hdl.handle.net/11336/90785
identifier_str_mv Ilawe, Niranjan V.; Oviedo, María Belén; Wong, Bryan M.; Effect of quantum tunneling on the efficiency of excitation energy transfer in plasmonic nanoparticle chain waveguides; Royal Society of Chemistry; Journal of Materials Chemistry C; 6; 22; 5-2018; 5857-5864
2050-7526
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://xlink.rsc.org/?DOI=C8TC01466C
info:eu-repo/semantics/altIdentifier/doi/10.1039/C8TC01466C
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613472831143936
score 13.070432