Real-time quantum dynamics of long-range electronic excitation transfer in plasmonic nanoantennas
- Autores
- Ilawe, Niranjan V.; Oviedo, María Belén; Wong, Bryan M.
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Using large-scale, real-time, quantum dynamics calculations, we present a detailed analysis of electronic excitation transfer (EET) mechanisms in a multiparticle plasmonic nanoantenna system. Specifically, we utilize real-time, time-dependent, density functional tight binding (RT-TDDFTB) to provide a quantum-mechanical description (at an electronic/atomistic level of detail) for characterizing and analyzing these systems, without recourse to classical approximations. We also demonstrate highly long-range electronic couplings in these complex systems and find that the range of these couplings is more than twice the conventional cutoff limit considered by Förster resonance energy transfer (FRET)-based approaches. Furthermore, we attribute these unusually long-ranged electronic couplings to the coherent oscillations of conduction electrons in plasmonic nanoparticles. This long-range nature of plasmonic interactions has important ramifications for EET; in particular, we show that the commonly used "nearest-neighbor" FRET model is inadequate for accurately characterizing EET even in simple plasmonic antenna systems. These findings provide a real-time, quantum-mechanical perspective for understanding EET mechanisms and provide guidance in enhancing plasmonic properties in artificial light-harvesting systems.
Fil: Ilawe, Niranjan V.. University of California; Estados Unidos
Fil: Oviedo, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. University of California; Estados Unidos
Fil: Wong, Bryan M.. University of California; Estados Unidos - Materia
-
Rt-Dftb
Energy Transfer
Nanoparticles
Plasmon - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/63868
Ver los metadatos del registro completo
id |
CONICETDig_62e8ca56c09855841a54c785860c3c32 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/63868 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Real-time quantum dynamics of long-range electronic excitation transfer in plasmonic nanoantennasIlawe, Niranjan V.Oviedo, María BelénWong, Bryan M.Rt-DftbEnergy TransferNanoparticlesPlasmonhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Using large-scale, real-time, quantum dynamics calculations, we present a detailed analysis of electronic excitation transfer (EET) mechanisms in a multiparticle plasmonic nanoantenna system. Specifically, we utilize real-time, time-dependent, density functional tight binding (RT-TDDFTB) to provide a quantum-mechanical description (at an electronic/atomistic level of detail) for characterizing and analyzing these systems, without recourse to classical approximations. We also demonstrate highly long-range electronic couplings in these complex systems and find that the range of these couplings is more than twice the conventional cutoff limit considered by Förster resonance energy transfer (FRET)-based approaches. Furthermore, we attribute these unusually long-ranged electronic couplings to the coherent oscillations of conduction electrons in plasmonic nanoparticles. This long-range nature of plasmonic interactions has important ramifications for EET; in particular, we show that the commonly used "nearest-neighbor" FRET model is inadequate for accurately characterizing EET even in simple plasmonic antenna systems. These findings provide a real-time, quantum-mechanical perspective for understanding EET mechanisms and provide guidance in enhancing plasmonic properties in artificial light-harvesting systems.Fil: Ilawe, Niranjan V.. University of California; Estados UnidosFil: Oviedo, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. University of California; Estados UnidosFil: Wong, Bryan M.. University of California; Estados UnidosAmerican Chemical Society2017-08-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/63868Ilawe, Niranjan V.; Oviedo, María Belén; Wong, Bryan M.; Real-time quantum dynamics of long-range electronic excitation transfer in plasmonic nanoantennas; American Chemical Society; Journal of Chemical Theory and Computation; 13; 8; 5-8-2017; 3442-34541549-96181549-9626CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/acs.jctc.7b00423info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jctc.7b00423info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)https://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:05Zoai:ri.conicet.gov.ar:11336/63868instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:05.772CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Real-time quantum dynamics of long-range electronic excitation transfer in plasmonic nanoantennas |
title |
Real-time quantum dynamics of long-range electronic excitation transfer in plasmonic nanoantennas |
spellingShingle |
Real-time quantum dynamics of long-range electronic excitation transfer in plasmonic nanoantennas Ilawe, Niranjan V. Rt-Dftb Energy Transfer Nanoparticles Plasmon |
title_short |
Real-time quantum dynamics of long-range electronic excitation transfer in plasmonic nanoantennas |
title_full |
Real-time quantum dynamics of long-range electronic excitation transfer in plasmonic nanoantennas |
title_fullStr |
Real-time quantum dynamics of long-range electronic excitation transfer in plasmonic nanoantennas |
title_full_unstemmed |
Real-time quantum dynamics of long-range electronic excitation transfer in plasmonic nanoantennas |
title_sort |
Real-time quantum dynamics of long-range electronic excitation transfer in plasmonic nanoantennas |
dc.creator.none.fl_str_mv |
Ilawe, Niranjan V. Oviedo, María Belén Wong, Bryan M. |
author |
Ilawe, Niranjan V. |
author_facet |
Ilawe, Niranjan V. Oviedo, María Belén Wong, Bryan M. |
author_role |
author |
author2 |
Oviedo, María Belén Wong, Bryan M. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Rt-Dftb Energy Transfer Nanoparticles Plasmon |
topic |
Rt-Dftb Energy Transfer Nanoparticles Plasmon |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Using large-scale, real-time, quantum dynamics calculations, we present a detailed analysis of electronic excitation transfer (EET) mechanisms in a multiparticle plasmonic nanoantenna system. Specifically, we utilize real-time, time-dependent, density functional tight binding (RT-TDDFTB) to provide a quantum-mechanical description (at an electronic/atomistic level of detail) for characterizing and analyzing these systems, without recourse to classical approximations. We also demonstrate highly long-range electronic couplings in these complex systems and find that the range of these couplings is more than twice the conventional cutoff limit considered by Förster resonance energy transfer (FRET)-based approaches. Furthermore, we attribute these unusually long-ranged electronic couplings to the coherent oscillations of conduction electrons in plasmonic nanoparticles. This long-range nature of plasmonic interactions has important ramifications for EET; in particular, we show that the commonly used "nearest-neighbor" FRET model is inadequate for accurately characterizing EET even in simple plasmonic antenna systems. These findings provide a real-time, quantum-mechanical perspective for understanding EET mechanisms and provide guidance in enhancing plasmonic properties in artificial light-harvesting systems. Fil: Ilawe, Niranjan V.. University of California; Estados Unidos Fil: Oviedo, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. University of California; Estados Unidos Fil: Wong, Bryan M.. University of California; Estados Unidos |
description |
Using large-scale, real-time, quantum dynamics calculations, we present a detailed analysis of electronic excitation transfer (EET) mechanisms in a multiparticle plasmonic nanoantenna system. Specifically, we utilize real-time, time-dependent, density functional tight binding (RT-TDDFTB) to provide a quantum-mechanical description (at an electronic/atomistic level of detail) for characterizing and analyzing these systems, without recourse to classical approximations. We also demonstrate highly long-range electronic couplings in these complex systems and find that the range of these couplings is more than twice the conventional cutoff limit considered by Förster resonance energy transfer (FRET)-based approaches. Furthermore, we attribute these unusually long-ranged electronic couplings to the coherent oscillations of conduction electrons in plasmonic nanoparticles. This long-range nature of plasmonic interactions has important ramifications for EET; in particular, we show that the commonly used "nearest-neighbor" FRET model is inadequate for accurately characterizing EET even in simple plasmonic antenna systems. These findings provide a real-time, quantum-mechanical perspective for understanding EET mechanisms and provide guidance in enhancing plasmonic properties in artificial light-harvesting systems. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/63868 Ilawe, Niranjan V.; Oviedo, María Belén; Wong, Bryan M.; Real-time quantum dynamics of long-range electronic excitation transfer in plasmonic nanoantennas; American Chemical Society; Journal of Chemical Theory and Computation; 13; 8; 5-8-2017; 3442-3454 1549-9618 1549-9626 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/63868 |
identifier_str_mv |
Ilawe, Niranjan V.; Oviedo, María Belén; Wong, Bryan M.; Real-time quantum dynamics of long-range electronic excitation transfer in plasmonic nanoantennas; American Chemical Society; Journal of Chemical Theory and Computation; 13; 8; 5-8-2017; 3442-3454 1549-9618 1549-9626 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/acs.jctc.7b00423 info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jctc.7b00423 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR) https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR) https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613167196405760 |
score |
13.070432 |