Oil Palm Empty Fruit Bunch (OPEFB) Fiber-Reinforced Acrylic Thermoplastic Composites: Effect of Salt Fog Aging on Tensile, Spectrophotometric, and Thermogravimetric Properties
- Autores
- Valle, Vladimir; Aguilar, Alex; Kreiker, Jeronimo Rafael; Raggiotti, Barbara Belen; Cadena, Francisco
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The prioritization of agroindustry fiber wastes as raw materials in development of composites has become a challenge to obtain higher value-added products with targeted applications. In this study, natural fiber-reinforced polymer matrix composites were elaborated using two fiber sizes (605 μm and 633 μm) of oil palm empty fruit bunch (OPEFB) and acrylic thermoplastic resin. In doing so, resin and fibers were mixed at room temperature by maintaining filler content of 42 wt. % for all formulations. In addition, thermomechanical compression moulding was used as composite manufacturing process at four processing temperatures (80, 100, 120, and 140°C). All formulations were subsequently exposed to salt fog spray aging for 330 hours. The effects of accelerated aging process on mechanical, spectrophotometric, and thermogravimetric characteristics were studied. On the whole, results have shown feasibility to use a facile method to elaborate composites based on waterborne acrylic matrix and OPEFB fibers. After salt spray testing, it was observed detectable levels of Aspergillus spp. of fungi in all samples, as a result of phylogenetic organization of microbial activity. Tensile behavior of composites was significantly influenced by processing temperature and fiber size. In broad terms, their overall mechanical properties were improved by the increase of temperature. Additionally, infrared spectroscopy results showed important bands mainly associated to biodegradation of cellulose, hemicellulose, and lignin. On the other hand, two degradation stages were mainly identified in thermogravimetric evaluation. Noteworthy, aging had no significant effect on the thermal properties of composites.
Fil: Valle, Vladimir. Escuela Politécnica Nacional; Ecuador
Fil: Aguilar, Alex. Escuela Politécnica Nacional; Ecuador
Fil: Kreiker, Jeronimo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro Experimental de la Vivienda Económica; Argentina
Fil: Raggiotti, Barbara Belen. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Departamento de Ingeniería Civil. Centro de Investigación, Desarrollo y Transferencia de Materiales y Calidad; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cadena, Francisco. Facultad de Ingeniería Química y Agroindustrial; Ecuador - Materia
-
OIL PALM EMPTY FRUIT BUNCH
AGROINDUSTRIAL WASTES
SUSTAINABLE PANELS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/211860
Ver los metadatos del registro completo
id |
CONICETDig_93034621f85ed720ff46968f4fbeee04 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/211860 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Oil Palm Empty Fruit Bunch (OPEFB) Fiber-Reinforced Acrylic Thermoplastic Composites: Effect of Salt Fog Aging on Tensile, Spectrophotometric, and Thermogravimetric PropertiesValle, VladimirAguilar, AlexKreiker, Jeronimo RafaelRaggiotti, Barbara BelenCadena, FranciscoOIL PALM EMPTY FRUIT BUNCHAGROINDUSTRIAL WASTESSUSTAINABLE PANELShttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2The prioritization of agroindustry fiber wastes as raw materials in development of composites has become a challenge to obtain higher value-added products with targeted applications. In this study, natural fiber-reinforced polymer matrix composites were elaborated using two fiber sizes (605 μm and 633 μm) of oil palm empty fruit bunch (OPEFB) and acrylic thermoplastic resin. In doing so, resin and fibers were mixed at room temperature by maintaining filler content of 42 wt. % for all formulations. In addition, thermomechanical compression moulding was used as composite manufacturing process at four processing temperatures (80, 100, 120, and 140°C). All formulations were subsequently exposed to salt fog spray aging for 330 hours. The effects of accelerated aging process on mechanical, spectrophotometric, and thermogravimetric characteristics were studied. On the whole, results have shown feasibility to use a facile method to elaborate composites based on waterborne acrylic matrix and OPEFB fibers. After salt spray testing, it was observed detectable levels of Aspergillus spp. of fungi in all samples, as a result of phylogenetic organization of microbial activity. Tensile behavior of composites was significantly influenced by processing temperature and fiber size. In broad terms, their overall mechanical properties were improved by the increase of temperature. Additionally, infrared spectroscopy results showed important bands mainly associated to biodegradation of cellulose, hemicellulose, and lignin. On the other hand, two degradation stages were mainly identified in thermogravimetric evaluation. Noteworthy, aging had no significant effect on the thermal properties of composites.Fil: Valle, Vladimir. Escuela Politécnica Nacional; EcuadorFil: Aguilar, Alex. Escuela Politécnica Nacional; EcuadorFil: Kreiker, Jeronimo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro Experimental de la Vivienda Económica; ArgentinaFil: Raggiotti, Barbara Belen. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Departamento de Ingeniería Civil. Centro de Investigación, Desarrollo y Transferencia de Materiales y Calidad; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cadena, Francisco. Facultad de Ingeniería Química y Agroindustrial; EcuadorHindawi Publishing Corporation2022-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/211860Valle, Vladimir; Aguilar, Alex; Kreiker, Jeronimo Rafael; Raggiotti, Barbara Belen; Cadena, Francisco; Oil Palm Empty Fruit Bunch (OPEFB) Fiber-Reinforced Acrylic Thermoplastic Composites: Effect of Salt Fog Aging on Tensile, Spectrophotometric, and Thermogravimetric Properties; Hindawi Publishing Corporation; International Journal of Polymer Science; 2022; 4-2022; 1-181687-94221687-9430CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/ijps/2022/6372264/info:eu-repo/semantics/altIdentifier/doi/10.1155/2022/6372264info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:00:33Zoai:ri.conicet.gov.ar:11336/211860instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:00:34.194CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Oil Palm Empty Fruit Bunch (OPEFB) Fiber-Reinforced Acrylic Thermoplastic Composites: Effect of Salt Fog Aging on Tensile, Spectrophotometric, and Thermogravimetric Properties |
title |
Oil Palm Empty Fruit Bunch (OPEFB) Fiber-Reinforced Acrylic Thermoplastic Composites: Effect of Salt Fog Aging on Tensile, Spectrophotometric, and Thermogravimetric Properties |
spellingShingle |
Oil Palm Empty Fruit Bunch (OPEFB) Fiber-Reinforced Acrylic Thermoplastic Composites: Effect of Salt Fog Aging on Tensile, Spectrophotometric, and Thermogravimetric Properties Valle, Vladimir OIL PALM EMPTY FRUIT BUNCH AGROINDUSTRIAL WASTES SUSTAINABLE PANELS |
title_short |
Oil Palm Empty Fruit Bunch (OPEFB) Fiber-Reinforced Acrylic Thermoplastic Composites: Effect of Salt Fog Aging on Tensile, Spectrophotometric, and Thermogravimetric Properties |
title_full |
Oil Palm Empty Fruit Bunch (OPEFB) Fiber-Reinforced Acrylic Thermoplastic Composites: Effect of Salt Fog Aging on Tensile, Spectrophotometric, and Thermogravimetric Properties |
title_fullStr |
Oil Palm Empty Fruit Bunch (OPEFB) Fiber-Reinforced Acrylic Thermoplastic Composites: Effect of Salt Fog Aging on Tensile, Spectrophotometric, and Thermogravimetric Properties |
title_full_unstemmed |
Oil Palm Empty Fruit Bunch (OPEFB) Fiber-Reinforced Acrylic Thermoplastic Composites: Effect of Salt Fog Aging on Tensile, Spectrophotometric, and Thermogravimetric Properties |
title_sort |
Oil Palm Empty Fruit Bunch (OPEFB) Fiber-Reinforced Acrylic Thermoplastic Composites: Effect of Salt Fog Aging on Tensile, Spectrophotometric, and Thermogravimetric Properties |
dc.creator.none.fl_str_mv |
Valle, Vladimir Aguilar, Alex Kreiker, Jeronimo Rafael Raggiotti, Barbara Belen Cadena, Francisco |
author |
Valle, Vladimir |
author_facet |
Valle, Vladimir Aguilar, Alex Kreiker, Jeronimo Rafael Raggiotti, Barbara Belen Cadena, Francisco |
author_role |
author |
author2 |
Aguilar, Alex Kreiker, Jeronimo Rafael Raggiotti, Barbara Belen Cadena, Francisco |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
OIL PALM EMPTY FRUIT BUNCH AGROINDUSTRIAL WASTES SUSTAINABLE PANELS |
topic |
OIL PALM EMPTY FRUIT BUNCH AGROINDUSTRIAL WASTES SUSTAINABLE PANELS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The prioritization of agroindustry fiber wastes as raw materials in development of composites has become a challenge to obtain higher value-added products with targeted applications. In this study, natural fiber-reinforced polymer matrix composites were elaborated using two fiber sizes (605 μm and 633 μm) of oil palm empty fruit bunch (OPEFB) and acrylic thermoplastic resin. In doing so, resin and fibers were mixed at room temperature by maintaining filler content of 42 wt. % for all formulations. In addition, thermomechanical compression moulding was used as composite manufacturing process at four processing temperatures (80, 100, 120, and 140°C). All formulations were subsequently exposed to salt fog spray aging for 330 hours. The effects of accelerated aging process on mechanical, spectrophotometric, and thermogravimetric characteristics were studied. On the whole, results have shown feasibility to use a facile method to elaborate composites based on waterborne acrylic matrix and OPEFB fibers. After salt spray testing, it was observed detectable levels of Aspergillus spp. of fungi in all samples, as a result of phylogenetic organization of microbial activity. Tensile behavior of composites was significantly influenced by processing temperature and fiber size. In broad terms, their overall mechanical properties were improved by the increase of temperature. Additionally, infrared spectroscopy results showed important bands mainly associated to biodegradation of cellulose, hemicellulose, and lignin. On the other hand, two degradation stages were mainly identified in thermogravimetric evaluation. Noteworthy, aging had no significant effect on the thermal properties of composites. Fil: Valle, Vladimir. Escuela Politécnica Nacional; Ecuador Fil: Aguilar, Alex. Escuela Politécnica Nacional; Ecuador Fil: Kreiker, Jeronimo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro Experimental de la Vivienda Económica; Argentina Fil: Raggiotti, Barbara Belen. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Departamento de Ingeniería Civil. Centro de Investigación, Desarrollo y Transferencia de Materiales y Calidad; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Cadena, Francisco. Facultad de Ingeniería Química y Agroindustrial; Ecuador |
description |
The prioritization of agroindustry fiber wastes as raw materials in development of composites has become a challenge to obtain higher value-added products with targeted applications. In this study, natural fiber-reinforced polymer matrix composites were elaborated using two fiber sizes (605 μm and 633 μm) of oil palm empty fruit bunch (OPEFB) and acrylic thermoplastic resin. In doing so, resin and fibers were mixed at room temperature by maintaining filler content of 42 wt. % for all formulations. In addition, thermomechanical compression moulding was used as composite manufacturing process at four processing temperatures (80, 100, 120, and 140°C). All formulations were subsequently exposed to salt fog spray aging for 330 hours. The effects of accelerated aging process on mechanical, spectrophotometric, and thermogravimetric characteristics were studied. On the whole, results have shown feasibility to use a facile method to elaborate composites based on waterborne acrylic matrix and OPEFB fibers. After salt spray testing, it was observed detectable levels of Aspergillus spp. of fungi in all samples, as a result of phylogenetic organization of microbial activity. Tensile behavior of composites was significantly influenced by processing temperature and fiber size. In broad terms, their overall mechanical properties were improved by the increase of temperature. Additionally, infrared spectroscopy results showed important bands mainly associated to biodegradation of cellulose, hemicellulose, and lignin. On the other hand, two degradation stages were mainly identified in thermogravimetric evaluation. Noteworthy, aging had no significant effect on the thermal properties of composites. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/211860 Valle, Vladimir; Aguilar, Alex; Kreiker, Jeronimo Rafael; Raggiotti, Barbara Belen; Cadena, Francisco; Oil Palm Empty Fruit Bunch (OPEFB) Fiber-Reinforced Acrylic Thermoplastic Composites: Effect of Salt Fog Aging on Tensile, Spectrophotometric, and Thermogravimetric Properties; Hindawi Publishing Corporation; International Journal of Polymer Science; 2022; 4-2022; 1-18 1687-9422 1687-9430 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/211860 |
identifier_str_mv |
Valle, Vladimir; Aguilar, Alex; Kreiker, Jeronimo Rafael; Raggiotti, Barbara Belen; Cadena, Francisco; Oil Palm Empty Fruit Bunch (OPEFB) Fiber-Reinforced Acrylic Thermoplastic Composites: Effect of Salt Fog Aging on Tensile, Spectrophotometric, and Thermogravimetric Properties; Hindawi Publishing Corporation; International Journal of Polymer Science; 2022; 4-2022; 1-18 1687-9422 1687-9430 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/ijps/2022/6372264/ info:eu-repo/semantics/altIdentifier/doi/10.1155/2022/6372264 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083144685453312 |
score |
13.221938 |