In silico performance analysis of web tools for CRISPRa sgRNA design in human genes
- Autores
- Nuñez Pedrozo, Cristian Nahuel; Peralta, Tomás M.; Olea, Fernanda Daniela; Locatelli, Paola; Crottogini, Alberto Jose; Belaich, Mariano Nicolas; Cuniberti, Luis Alberto
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Angiogenic gene overexpression has been the main strategy in numerous vascular regenerative gene therapy projects. However, most have failed in clinical trials. CRISPRa technology enhances gene overexpression levels based on the identification of sgRNAs with maximum efficiency and safety. CRISPick and CHOP CHOP are the most widely used web tools for the prediction of sgRNAs. The objective of our study was to analyze the performance of both platforms for the sgRNA design to angiogenic genes (VEGFA, KDR, EPO, HIF-1A, HGF, FGF, PGF, FGF1) involving different human reference genomes (GRCH 37 and GRCH 38). The top 20 ranked sgRNAs proposed by the two tools were analyzed in different aspects. No significant differences were found on the DNA curvature associated with the sgRNA binding sites but the sgRNA predicted on-target efficiency was significantly greater when CRISPick was used. Moreover, the mean ranking variation was greater for the same platform in EPO, EGF, HIF-1A, PGF and HGF, whereas it did not reach statistical significance in KDR, FGF-1 and VEGFA. The rearrangement analysis of the ranking positions was also different between platforms. CRISPick proved to be more accurate in establishing the best sgRNAs in relation to a more complete genome, whereas CHOP CHOP showed a narrower classification reordering.
Fil: Nuñez Pedrozo, Cristian Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina
Fil: Peralta, Tomás M.. Universidad Favaloro; Argentina
Fil: Olea, Fernanda Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina
Fil: Locatelli, Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina
Fil: Crottogini, Alberto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina
Fil: Belaich, Mariano Nicolas. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cuniberti, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina - Materia
-
ANGIOGENIC GENE
CRISPRA
SGRNA DESIGN
WEB TOOL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/200474
Ver los metadatos del registro completo
| id |
CONICETDig_92f63f2d8e567536bc12f6a86d99ab53 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/200474 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
In silico performance analysis of web tools for CRISPRa sgRNA design in human genesNuñez Pedrozo, Cristian NahuelPeralta, Tomás M.Olea, Fernanda DanielaLocatelli, PaolaCrottogini, Alberto JoseBelaich, Mariano NicolasCuniberti, Luis AlbertoANGIOGENIC GENECRISPRASGRNA DESIGNWEB TOOLhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Angiogenic gene overexpression has been the main strategy in numerous vascular regenerative gene therapy projects. However, most have failed in clinical trials. CRISPRa technology enhances gene overexpression levels based on the identification of sgRNAs with maximum efficiency and safety. CRISPick and CHOP CHOP are the most widely used web tools for the prediction of sgRNAs. The objective of our study was to analyze the performance of both platforms for the sgRNA design to angiogenic genes (VEGFA, KDR, EPO, HIF-1A, HGF, FGF, PGF, FGF1) involving different human reference genomes (GRCH 37 and GRCH 38). The top 20 ranked sgRNAs proposed by the two tools were analyzed in different aspects. No significant differences were found on the DNA curvature associated with the sgRNA binding sites but the sgRNA predicted on-target efficiency was significantly greater when CRISPick was used. Moreover, the mean ranking variation was greater for the same platform in EPO, EGF, HIF-1A, PGF and HGF, whereas it did not reach statistical significance in KDR, FGF-1 and VEGFA. The rearrangement analysis of the ranking positions was also different between platforms. CRISPick proved to be more accurate in establishing the best sgRNAs in relation to a more complete genome, whereas CHOP CHOP showed a narrower classification reordering.Fil: Nuñez Pedrozo, Cristian Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Peralta, Tomás M.. Universidad Favaloro; ArgentinaFil: Olea, Fernanda Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Locatelli, Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Crottogini, Alberto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Belaich, Mariano Nicolas. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cuniberti, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaElsevier2022-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/200474Nuñez Pedrozo, Cristian Nahuel; Peralta, Tomás M.; Olea, Fernanda Daniela; Locatelli, Paola; Crottogini, Alberto Jose; et al.; In silico performance analysis of web tools for CRISPRa sgRNA design in human genes; Elsevier; Computational and Structural Biotechnology Journal; 20; 1-2022; 3779-37822001-0370CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S200103702200304X?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.csbj.2022.07.023info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-02-06T12:38:24Zoai:ri.conicet.gov.ar:11336/200474instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-02-06 12:38:25.261CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
In silico performance analysis of web tools for CRISPRa sgRNA design in human genes |
| title |
In silico performance analysis of web tools for CRISPRa sgRNA design in human genes |
| spellingShingle |
In silico performance analysis of web tools for CRISPRa sgRNA design in human genes Nuñez Pedrozo, Cristian Nahuel ANGIOGENIC GENE CRISPRA SGRNA DESIGN WEB TOOL |
| title_short |
In silico performance analysis of web tools for CRISPRa sgRNA design in human genes |
| title_full |
In silico performance analysis of web tools for CRISPRa sgRNA design in human genes |
| title_fullStr |
In silico performance analysis of web tools for CRISPRa sgRNA design in human genes |
| title_full_unstemmed |
In silico performance analysis of web tools for CRISPRa sgRNA design in human genes |
| title_sort |
In silico performance analysis of web tools for CRISPRa sgRNA design in human genes |
| dc.creator.none.fl_str_mv |
Nuñez Pedrozo, Cristian Nahuel Peralta, Tomás M. Olea, Fernanda Daniela Locatelli, Paola Crottogini, Alberto Jose Belaich, Mariano Nicolas Cuniberti, Luis Alberto |
| author |
Nuñez Pedrozo, Cristian Nahuel |
| author_facet |
Nuñez Pedrozo, Cristian Nahuel Peralta, Tomás M. Olea, Fernanda Daniela Locatelli, Paola Crottogini, Alberto Jose Belaich, Mariano Nicolas Cuniberti, Luis Alberto |
| author_role |
author |
| author2 |
Peralta, Tomás M. Olea, Fernanda Daniela Locatelli, Paola Crottogini, Alberto Jose Belaich, Mariano Nicolas Cuniberti, Luis Alberto |
| author2_role |
author author author author author author |
| dc.subject.none.fl_str_mv |
ANGIOGENIC GENE CRISPRA SGRNA DESIGN WEB TOOL |
| topic |
ANGIOGENIC GENE CRISPRA SGRNA DESIGN WEB TOOL |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Angiogenic gene overexpression has been the main strategy in numerous vascular regenerative gene therapy projects. However, most have failed in clinical trials. CRISPRa technology enhances gene overexpression levels based on the identification of sgRNAs with maximum efficiency and safety. CRISPick and CHOP CHOP are the most widely used web tools for the prediction of sgRNAs. The objective of our study was to analyze the performance of both platforms for the sgRNA design to angiogenic genes (VEGFA, KDR, EPO, HIF-1A, HGF, FGF, PGF, FGF1) involving different human reference genomes (GRCH 37 and GRCH 38). The top 20 ranked sgRNAs proposed by the two tools were analyzed in different aspects. No significant differences were found on the DNA curvature associated with the sgRNA binding sites but the sgRNA predicted on-target efficiency was significantly greater when CRISPick was used. Moreover, the mean ranking variation was greater for the same platform in EPO, EGF, HIF-1A, PGF and HGF, whereas it did not reach statistical significance in KDR, FGF-1 and VEGFA. The rearrangement analysis of the ranking positions was also different between platforms. CRISPick proved to be more accurate in establishing the best sgRNAs in relation to a more complete genome, whereas CHOP CHOP showed a narrower classification reordering. Fil: Nuñez Pedrozo, Cristian Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina Fil: Peralta, Tomás M.. Universidad Favaloro; Argentina Fil: Olea, Fernanda Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina Fil: Locatelli, Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina Fil: Crottogini, Alberto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina Fil: Belaich, Mariano Nicolas. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Cuniberti, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina |
| description |
Angiogenic gene overexpression has been the main strategy in numerous vascular regenerative gene therapy projects. However, most have failed in clinical trials. CRISPRa technology enhances gene overexpression levels based on the identification of sgRNAs with maximum efficiency and safety. CRISPick and CHOP CHOP are the most widely used web tools for the prediction of sgRNAs. The objective of our study was to analyze the performance of both platforms for the sgRNA design to angiogenic genes (VEGFA, KDR, EPO, HIF-1A, HGF, FGF, PGF, FGF1) involving different human reference genomes (GRCH 37 and GRCH 38). The top 20 ranked sgRNAs proposed by the two tools were analyzed in different aspects. No significant differences were found on the DNA curvature associated with the sgRNA binding sites but the sgRNA predicted on-target efficiency was significantly greater when CRISPick was used. Moreover, the mean ranking variation was greater for the same platform in EPO, EGF, HIF-1A, PGF and HGF, whereas it did not reach statistical significance in KDR, FGF-1 and VEGFA. The rearrangement analysis of the ranking positions was also different between platforms. CRISPick proved to be more accurate in establishing the best sgRNAs in relation to a more complete genome, whereas CHOP CHOP showed a narrower classification reordering. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/200474 Nuñez Pedrozo, Cristian Nahuel; Peralta, Tomás M.; Olea, Fernanda Daniela; Locatelli, Paola; Crottogini, Alberto Jose; et al.; In silico performance analysis of web tools for CRISPRa sgRNA design in human genes; Elsevier; Computational and Structural Biotechnology Journal; 20; 1-2022; 3779-3782 2001-0370 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/200474 |
| identifier_str_mv |
Nuñez Pedrozo, Cristian Nahuel; Peralta, Tomás M.; Olea, Fernanda Daniela; Locatelli, Paola; Crottogini, Alberto Jose; et al.; In silico performance analysis of web tools for CRISPRa sgRNA design in human genes; Elsevier; Computational and Structural Biotechnology Journal; 20; 1-2022; 3779-3782 2001-0370 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S200103702200304X?via%3Dihub info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csbj.2022.07.023 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1856403192104878080 |
| score |
13.106097 |