ChemVA: Interactive visual analysis of chemical compound similarity in virtual screening
- Autores
- Sabando, María Virginia; Ulbrich, Pavol; Selzer, Matias Nicolas; Byska, Jan; Mican, Jan; Ponzoni, Ignacio; Soto, Axel Juan; Ganuza, María Luján; Kozlikova, Barbora
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the modern drug discovery process, medicinal chemists deal with the complexity of analysis of large ensembles of candidate molecules. Computational tools, such as dimensionality reduction (DR) and classification, are commonly used to efficiently process the multidimensional space of features. These underlying calculations often hinder interpretability of results and prevent experts from assessing the impact of individual molecular features on the resulting representations. To provide a solution for scrutinizing such complex data, we introduce ChemVA, an interactive application for the visual exploration of large molecular ensembles and their features. Our tool consists of multiple coordinated views: Hexagonal view, Detail view, 3D view, Table view, and a newly proposed Difference view designed for the comparison of DR projections. These views display DR projections combined with biological activity, selected molecular features, and confidence scores for each of these projections. This conjunction of views allows the user to drill down through the dataset and to efficiently select candidate compounds. Our approach was evaluated on two case studies of finding structurally similar ligands with similar binding affinity to a target protein, as well as on an external qualitative evaluation. The results suggest that our system allows effective visual inspection and comparison of different high-dimensional molecular representations. Furthermore, ChemVA assists in the identification of candidate compounds while providing information on the certainty behind different molecular representations.
Fil: Sabando, María Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Ulbrich, Pavol. Masaryk University. Faculty of Sciences; República Checa
Fil: Selzer, Matias Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Ciencias de la Imágenes; Argentina
Fil: Byska, Jan. Masaryk University. Faculty of Sciences; República Checa
Fil: Mican, Jan. Masaryk University. Faculty of Sciences; República Checa
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Soto, Axel Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Ganuza, María Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Ciencias de la Imágenes; Argentina
Fil: Kozlikova, Barbora. Masaryk University. Faculty of Sciences; República Checa - Materia
-
Tools
Compounds
Visualization
Two dimensional displays
Drugs
Three-dimensional displays
Chemicals - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/126963
Ver los metadatos del registro completo
id |
CONICETDig_9274f299c387a043d8558ae8f452e1cc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/126963 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
ChemVA: Interactive visual analysis of chemical compound similarity in virtual screeningSabando, María VirginiaUlbrich, PavolSelzer, Matias NicolasByska, JanMican, JanPonzoni, IgnacioSoto, Axel JuanGanuza, María LujánKozlikova, BarboraToolsCompoundsVisualizationTwo dimensional displaysDrugsThree-dimensional displaysChemicalshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In the modern drug discovery process, medicinal chemists deal with the complexity of analysis of large ensembles of candidate molecules. Computational tools, such as dimensionality reduction (DR) and classification, are commonly used to efficiently process the multidimensional space of features. These underlying calculations often hinder interpretability of results and prevent experts from assessing the impact of individual molecular features on the resulting representations. To provide a solution for scrutinizing such complex data, we introduce ChemVA, an interactive application for the visual exploration of large molecular ensembles and their features. Our tool consists of multiple coordinated views: Hexagonal view, Detail view, 3D view, Table view, and a newly proposed Difference view designed for the comparison of DR projections. These views display DR projections combined with biological activity, selected molecular features, and confidence scores for each of these projections. This conjunction of views allows the user to drill down through the dataset and to efficiently select candidate compounds. Our approach was evaluated on two case studies of finding structurally similar ligands with similar binding affinity to a target protein, as well as on an external qualitative evaluation. The results suggest that our system allows effective visual inspection and comparison of different high-dimensional molecular representations. Furthermore, ChemVA assists in the identification of candidate compounds while providing information on the certainty behind different molecular representations.Fil: Sabando, María Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Ulbrich, Pavol. Masaryk University. Faculty of Sciences; República ChecaFil: Selzer, Matias Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Ciencias de la Imágenes; ArgentinaFil: Byska, Jan. Masaryk University. Faculty of Sciences; República ChecaFil: Mican, Jan. Masaryk University. Faculty of Sciences; República ChecaFil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Soto, Axel Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Ganuza, María Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Ciencias de la Imágenes; ArgentinaFil: Kozlikova, Barbora. Masaryk University. Faculty of Sciences; República ChecaIEEE Computer Society2021-02-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/126963Sabando, María Virginia; Ulbrich, Pavol; Selzer, Matias Nicolas; Byska, Jan; Mican, Jan; et al.; ChemVA: Interactive visual analysis of chemical compound similarity in virtual screening; IEEE Computer Society; IEEE Transactions on Visualization and Computer Graphics; 27; 2; 13-2-2021; 891-9011077-26261941-0506CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9222282/info:eu-repo/semantics/altIdentifier/doi/ 10.1109/TVCG.2020.3030438info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2008.13150info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:21:16Zoai:ri.conicet.gov.ar:11336/126963instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:21:16.618CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
ChemVA: Interactive visual analysis of chemical compound similarity in virtual screening |
title |
ChemVA: Interactive visual analysis of chemical compound similarity in virtual screening |
spellingShingle |
ChemVA: Interactive visual analysis of chemical compound similarity in virtual screening Sabando, María Virginia Tools Compounds Visualization Two dimensional displays Drugs Three-dimensional displays Chemicals |
title_short |
ChemVA: Interactive visual analysis of chemical compound similarity in virtual screening |
title_full |
ChemVA: Interactive visual analysis of chemical compound similarity in virtual screening |
title_fullStr |
ChemVA: Interactive visual analysis of chemical compound similarity in virtual screening |
title_full_unstemmed |
ChemVA: Interactive visual analysis of chemical compound similarity in virtual screening |
title_sort |
ChemVA: Interactive visual analysis of chemical compound similarity in virtual screening |
dc.creator.none.fl_str_mv |
Sabando, María Virginia Ulbrich, Pavol Selzer, Matias Nicolas Byska, Jan Mican, Jan Ponzoni, Ignacio Soto, Axel Juan Ganuza, María Luján Kozlikova, Barbora |
author |
Sabando, María Virginia |
author_facet |
Sabando, María Virginia Ulbrich, Pavol Selzer, Matias Nicolas Byska, Jan Mican, Jan Ponzoni, Ignacio Soto, Axel Juan Ganuza, María Luján Kozlikova, Barbora |
author_role |
author |
author2 |
Ulbrich, Pavol Selzer, Matias Nicolas Byska, Jan Mican, Jan Ponzoni, Ignacio Soto, Axel Juan Ganuza, María Luján Kozlikova, Barbora |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Tools Compounds Visualization Two dimensional displays Drugs Three-dimensional displays Chemicals |
topic |
Tools Compounds Visualization Two dimensional displays Drugs Three-dimensional displays Chemicals |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the modern drug discovery process, medicinal chemists deal with the complexity of analysis of large ensembles of candidate molecules. Computational tools, such as dimensionality reduction (DR) and classification, are commonly used to efficiently process the multidimensional space of features. These underlying calculations often hinder interpretability of results and prevent experts from assessing the impact of individual molecular features on the resulting representations. To provide a solution for scrutinizing such complex data, we introduce ChemVA, an interactive application for the visual exploration of large molecular ensembles and their features. Our tool consists of multiple coordinated views: Hexagonal view, Detail view, 3D view, Table view, and a newly proposed Difference view designed for the comparison of DR projections. These views display DR projections combined with biological activity, selected molecular features, and confidence scores for each of these projections. This conjunction of views allows the user to drill down through the dataset and to efficiently select candidate compounds. Our approach was evaluated on two case studies of finding structurally similar ligands with similar binding affinity to a target protein, as well as on an external qualitative evaluation. The results suggest that our system allows effective visual inspection and comparison of different high-dimensional molecular representations. Furthermore, ChemVA assists in the identification of candidate compounds while providing information on the certainty behind different molecular representations. Fil: Sabando, María Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina Fil: Ulbrich, Pavol. Masaryk University. Faculty of Sciences; República Checa Fil: Selzer, Matias Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Ciencias de la Imágenes; Argentina Fil: Byska, Jan. Masaryk University. Faculty of Sciences; República Checa Fil: Mican, Jan. Masaryk University. Faculty of Sciences; República Checa Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina Fil: Soto, Axel Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina Fil: Ganuza, María Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Ciencias de la Imágenes; Argentina Fil: Kozlikova, Barbora. Masaryk University. Faculty of Sciences; República Checa |
description |
In the modern drug discovery process, medicinal chemists deal with the complexity of analysis of large ensembles of candidate molecules. Computational tools, such as dimensionality reduction (DR) and classification, are commonly used to efficiently process the multidimensional space of features. These underlying calculations often hinder interpretability of results and prevent experts from assessing the impact of individual molecular features on the resulting representations. To provide a solution for scrutinizing such complex data, we introduce ChemVA, an interactive application for the visual exploration of large molecular ensembles and their features. Our tool consists of multiple coordinated views: Hexagonal view, Detail view, 3D view, Table view, and a newly proposed Difference view designed for the comparison of DR projections. These views display DR projections combined with biological activity, selected molecular features, and confidence scores for each of these projections. This conjunction of views allows the user to drill down through the dataset and to efficiently select candidate compounds. Our approach was evaluated on two case studies of finding structurally similar ligands with similar binding affinity to a target protein, as well as on an external qualitative evaluation. The results suggest that our system allows effective visual inspection and comparison of different high-dimensional molecular representations. Furthermore, ChemVA assists in the identification of candidate compounds while providing information on the certainty behind different molecular representations. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02-13 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/126963 Sabando, María Virginia; Ulbrich, Pavol; Selzer, Matias Nicolas; Byska, Jan; Mican, Jan; et al.; ChemVA: Interactive visual analysis of chemical compound similarity in virtual screening; IEEE Computer Society; IEEE Transactions on Visualization and Computer Graphics; 27; 2; 13-2-2021; 891-901 1077-2626 1941-0506 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/126963 |
identifier_str_mv |
Sabando, María Virginia; Ulbrich, Pavol; Selzer, Matias Nicolas; Byska, Jan; Mican, Jan; et al.; ChemVA: Interactive visual analysis of chemical compound similarity in virtual screening; IEEE Computer Society; IEEE Transactions on Visualization and Computer Graphics; 27; 2; 13-2-2021; 891-901 1077-2626 1941-0506 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9222282/ info:eu-repo/semantics/altIdentifier/doi/ 10.1109/TVCG.2020.3030438 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2008.13150 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IEEE Computer Society |
publisher.none.fl_str_mv |
IEEE Computer Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614200730583040 |
score |
13.070432 |