Model uncertainty estimation of a solid oxide fuel cell using a Volterra-type model
- Autores
- Biagiola, Silvina Ines; Schmidt, Christian Andrés; Figueroa, Jose Luis
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The dynamic nature of solid oxide fuel cells (SOFC) shows that they can be conceived as multi-input multi-output nonlinear processes. Aiming at dynamic simulation and control, this work presents a modeling study of a SOFC stack following a gray-box modeling approach. For such purpose, a Modified Generalized Memory Polynomial (MGMP) model is identified based only on input–output data of the system. Additionally, dedicated estimation is dealt with in order to cope with the presence of possible model uncertainty. Simulation results are given to illustrate the quality of the obtained model which is compared with other modeling approaches.
Fil: Biagiola, Silvina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; Argentina
Fil: Schmidt, Christian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; Argentina
Fil: Figueroa, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; Argentina - Materia
-
Identification
Uncertainty Estimation
Solid Oxide Fuel Cell - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/11784
Ver los metadatos del registro completo
id |
CONICETDig_925b2cf1a9085bd40154db7e557df2c2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/11784 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Model uncertainty estimation of a solid oxide fuel cell using a Volterra-type modelBiagiola, Silvina InesSchmidt, Christian AndrésFigueroa, Jose LuisIdentificationUncertainty EstimationSolid Oxide Fuel Cellhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The dynamic nature of solid oxide fuel cells (SOFC) shows that they can be conceived as multi-input multi-output nonlinear processes. Aiming at dynamic simulation and control, this work presents a modeling study of a SOFC stack following a gray-box modeling approach. For such purpose, a Modified Generalized Memory Polynomial (MGMP) model is identified based only on input–output data of the system. Additionally, dedicated estimation is dealt with in order to cope with the presence of possible model uncertainty. Simulation results are given to illustrate the quality of the obtained model which is compared with other modeling approaches.Fil: Biagiola, Silvina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; ArgentinaFil: Schmidt, Christian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; ArgentinaFil: Figueroa, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; ArgentinaElsevier Science2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11784Biagiola, Silvina Ines; Schmidt, Christian Andrés; Figueroa, Jose Luis; Model uncertainty estimation of a solid oxide fuel cell using a Volterra-type model; Elsevier Science; Journal Of The Franklin Institute; 351; 8; 8-2014; 4183-41970016-0032enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0016003214001392info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfranklin.2014.04.025info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:26Zoai:ri.conicet.gov.ar:11336/11784instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:27.075CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Model uncertainty estimation of a solid oxide fuel cell using a Volterra-type model |
title |
Model uncertainty estimation of a solid oxide fuel cell using a Volterra-type model |
spellingShingle |
Model uncertainty estimation of a solid oxide fuel cell using a Volterra-type model Biagiola, Silvina Ines Identification Uncertainty Estimation Solid Oxide Fuel Cell |
title_short |
Model uncertainty estimation of a solid oxide fuel cell using a Volterra-type model |
title_full |
Model uncertainty estimation of a solid oxide fuel cell using a Volterra-type model |
title_fullStr |
Model uncertainty estimation of a solid oxide fuel cell using a Volterra-type model |
title_full_unstemmed |
Model uncertainty estimation of a solid oxide fuel cell using a Volterra-type model |
title_sort |
Model uncertainty estimation of a solid oxide fuel cell using a Volterra-type model |
dc.creator.none.fl_str_mv |
Biagiola, Silvina Ines Schmidt, Christian Andrés Figueroa, Jose Luis |
author |
Biagiola, Silvina Ines |
author_facet |
Biagiola, Silvina Ines Schmidt, Christian Andrés Figueroa, Jose Luis |
author_role |
author |
author2 |
Schmidt, Christian Andrés Figueroa, Jose Luis |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Identification Uncertainty Estimation Solid Oxide Fuel Cell |
topic |
Identification Uncertainty Estimation Solid Oxide Fuel Cell |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The dynamic nature of solid oxide fuel cells (SOFC) shows that they can be conceived as multi-input multi-output nonlinear processes. Aiming at dynamic simulation and control, this work presents a modeling study of a SOFC stack following a gray-box modeling approach. For such purpose, a Modified Generalized Memory Polynomial (MGMP) model is identified based only on input–output data of the system. Additionally, dedicated estimation is dealt with in order to cope with the presence of possible model uncertainty. Simulation results are given to illustrate the quality of the obtained model which is compared with other modeling approaches. Fil: Biagiola, Silvina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; Argentina Fil: Schmidt, Christian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; Argentina Fil: Figueroa, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; Argentina |
description |
The dynamic nature of solid oxide fuel cells (SOFC) shows that they can be conceived as multi-input multi-output nonlinear processes. Aiming at dynamic simulation and control, this work presents a modeling study of a SOFC stack following a gray-box modeling approach. For such purpose, a Modified Generalized Memory Polynomial (MGMP) model is identified based only on input–output data of the system. Additionally, dedicated estimation is dealt with in order to cope with the presence of possible model uncertainty. Simulation results are given to illustrate the quality of the obtained model which is compared with other modeling approaches. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/11784 Biagiola, Silvina Ines; Schmidt, Christian Andrés; Figueroa, Jose Luis; Model uncertainty estimation of a solid oxide fuel cell using a Volterra-type model; Elsevier Science; Journal Of The Franklin Institute; 351; 8; 8-2014; 4183-4197 0016-0032 |
url |
http://hdl.handle.net/11336/11784 |
identifier_str_mv |
Biagiola, Silvina Ines; Schmidt, Christian Andrés; Figueroa, Jose Luis; Model uncertainty estimation of a solid oxide fuel cell using a Volterra-type model; Elsevier Science; Journal Of The Franklin Institute; 351; 8; 8-2014; 4183-4197 0016-0032 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0016003214001392 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfranklin.2014.04.025 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613671430389760 |
score |
13.070432 |