The oxygen reduction reaction in solid oxide fuel cells: From kinetic parameters measurements to electrode design

Autores
Ascolani Yael, Julian Esteban; Montenegro Hernandez, Alejandra; Garcés, Diana Andrea; Liu, Quinyuan; Wang, Hongqian; Yakal Kremski, Kyle; Barnett, Scott; Mogni, Liliana Verónica
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The research and development of new Solid Oxide Fuel Cell cathode materials is an area of intense activity. The kinetic coefficients describing the O2-reduction mechanism are the O-ion diffusion (Dchem) and the O-surface exchange coefficients (kchem). These parameters are strongly dependent on the nature of the material, both on its bulk and surface atomic and electronic structures. This review discusses the method for obtaining the kinetic coefficients through the combination of electrochemical impedance spectroscopy with focused ion-beam 3D tomography measurements on porous electrodes (3DT-EIS). The data, together with oxygen non-stoichiometry thermodynamic data, is analysed using the Adler-Lane-Steele model for macro-homogeneous porous electrodes. The results for different families of oxides are compared: single- and double-layered perovskites with O-vacancies defects, based on La-Sr cobalt ferrites (La0.6Sr0.4Co1-xFexO3-δ, x = 0.2 and 0.8) and La/Pr-Ba cobaltites (La0.5-xPrxBa0.5CoO3-δ, x = 0.0, 0.2 and 0.5), as well as Ruddlesden-Popper nickelates (Nd2NiO4 +δ) with O-interstitial defects. The analysis of the evolution of molar surface exchange rates with oxygen partial pressure provides information about the mechanisms limiting the O2-surface reaction, which generally is dissociative adsorption or dissociation-limited. At 700 ◦C in air, the La-Ba cobaltite structures, La0.5-xPrxBa0.5CoO3-δ, feature the most active surfaces (kchem≃0.5-1 10−2 cm.s−1), followed by the nickelate Nd2NiO4 +δ and the La-Sr cobalt ferrites, with kchem≃1-5 10−5 cm.s−1. The diffusion coefficients Dchem are higher for cubic perovskites than for the layered ones. For La0.6Sr0.4Co0.8Fe0.2O3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ, Dchem is 2.6 10−6 cm2.s−1 and 5.4 10−7 cm2.s−1, respectively. These values are comparable to Dchem = 1.2 10−6 cm2.s−1, observed for La0.5Ba0.5CoO3-δ. The layered structure drastically reduces the O-ion bulk diffusion, e.g. Dchem = 1.3 10−8 cm2.s−1 for the Pr0.5Ba0.5CoO3-δ double perovskite and Dchem≃2 10−7cm2.s−1 for Nd2NiO4 +δ. Finally, the analysis of the time evolution of the electrodes shows that the surface cation segregation affects both the O-ion bulk diffusion and the surface exchange rates.
Fil: Ascolani Yael, Julian Esteban. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
Fil: Montenegro Hernandez, Alejandra. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
Fil: Garcés, Diana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes; Argentina
Fil: Liu, Quinyuan. Northwestern University; Estados Unidos
Fil: Wang, Hongqian. Northwestern University; Estados Unidos
Fil: Yakal Kremski, Kyle. Northwestern University; Estados Unidos
Fil: Barnett, Scott. Northwestern University; Estados Unidos
Fil: Mogni, Liliana Verónica. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
Materia
CATHODE
O-ION DIFFUSION COEFFICIENT
SOLID OXIDE FUEL CELL
SURFACE EXCHANGE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/146662

id CONICETDig_5d192f6b65836ecd9c76d80ad1b9cd8f
oai_identifier_str oai:ri.conicet.gov.ar:11336/146662
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The oxygen reduction reaction in solid oxide fuel cells: From kinetic parameters measurements to electrode designAscolani Yael, Julian EstebanMontenegro Hernandez, AlejandraGarcés, Diana AndreaLiu, QuinyuanWang, HongqianYakal Kremski, KyleBarnett, ScottMogni, Liliana VerónicaCATHODEO-ION DIFFUSION COEFFICIENTSOLID OXIDE FUEL CELLSURFACE EXCHANGEhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2The research and development of new Solid Oxide Fuel Cell cathode materials is an area of intense activity. The kinetic coefficients describing the O2-reduction mechanism are the O-ion diffusion (Dchem) and the O-surface exchange coefficients (kchem). These parameters are strongly dependent on the nature of the material, both on its bulk and surface atomic and electronic structures. This review discusses the method for obtaining the kinetic coefficients through the combination of electrochemical impedance spectroscopy with focused ion-beam 3D tomography measurements on porous electrodes (3DT-EIS). The data, together with oxygen non-stoichiometry thermodynamic data, is analysed using the Adler-Lane-Steele model for macro-homogeneous porous electrodes. The results for different families of oxides are compared: single- and double-layered perovskites with O-vacancies defects, based on La-Sr cobalt ferrites (La0.6Sr0.4Co1-xFexO3-δ, x = 0.2 and 0.8) and La/Pr-Ba cobaltites (La0.5-xPrxBa0.5CoO3-δ, x = 0.0, 0.2 and 0.5), as well as Ruddlesden-Popper nickelates (Nd2NiO4 +δ) with O-interstitial defects. The analysis of the evolution of molar surface exchange rates with oxygen partial pressure provides information about the mechanisms limiting the O2-surface reaction, which generally is dissociative adsorption or dissociation-limited. At 700 ◦C in air, the La-Ba cobaltite structures, La0.5-xPrxBa0.5CoO3-δ, feature the most active surfaces (kchem≃0.5-1 10−2 cm.s−1), followed by the nickelate Nd2NiO4 +δ and the La-Sr cobalt ferrites, with kchem≃1-5 10−5 cm.s−1. The diffusion coefficients Dchem are higher for cubic perovskites than for the layered ones. For La0.6Sr0.4Co0.8Fe0.2O3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ, Dchem is 2.6 10−6 cm2.s−1 and 5.4 10−7 cm2.s−1, respectively. These values are comparable to Dchem = 1.2 10−6 cm2.s−1, observed for La0.5Ba0.5CoO3-δ. The layered structure drastically reduces the O-ion bulk diffusion, e.g. Dchem = 1.3 10−8 cm2.s−1 for the Pr0.5Ba0.5CoO3-δ double perovskite and Dchem≃2 10−7cm2.s−1 for Nd2NiO4 +δ. Finally, the analysis of the time evolution of the electrodes shows that the surface cation segregation affects both the O-ion bulk diffusion and the surface exchange rates.Fil: Ascolani Yael, Julian Esteban. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Montenegro Hernandez, Alejandra. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Garcés, Diana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes; ArgentinaFil: Liu, Quinyuan. Northwestern University; Estados UnidosFil: Wang, Hongqian. Northwestern University; Estados UnidosFil: Yakal Kremski, Kyle. Northwestern University; Estados UnidosFil: Barnett, Scott. Northwestern University; Estados UnidosFil: Mogni, Liliana Verónica. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaIOP Publishing2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146662Ascolani Yael, Julian Esteban; Montenegro Hernandez, Alejandra; Garcés, Diana Andrea; Liu, Quinyuan; Wang, Hongqian; et al.; The oxygen reduction reaction in solid oxide fuel cells: From kinetic parameters measurements to electrode design; IOP Publishing; JPhys Energy; 2; 4; 10-2020; 1-292515-7655CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2515-7655/abb4ecinfo:eu-repo/semantics/altIdentifier/doi/10.1088/2515-7655/abb4ecinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:17:22Zoai:ri.conicet.gov.ar:11336/146662instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:17:22.907CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The oxygen reduction reaction in solid oxide fuel cells: From kinetic parameters measurements to electrode design
title The oxygen reduction reaction in solid oxide fuel cells: From kinetic parameters measurements to electrode design
spellingShingle The oxygen reduction reaction in solid oxide fuel cells: From kinetic parameters measurements to electrode design
Ascolani Yael, Julian Esteban
CATHODE
O-ION DIFFUSION COEFFICIENT
SOLID OXIDE FUEL CELL
SURFACE EXCHANGE
title_short The oxygen reduction reaction in solid oxide fuel cells: From kinetic parameters measurements to electrode design
title_full The oxygen reduction reaction in solid oxide fuel cells: From kinetic parameters measurements to electrode design
title_fullStr The oxygen reduction reaction in solid oxide fuel cells: From kinetic parameters measurements to electrode design
title_full_unstemmed The oxygen reduction reaction in solid oxide fuel cells: From kinetic parameters measurements to electrode design
title_sort The oxygen reduction reaction in solid oxide fuel cells: From kinetic parameters measurements to electrode design
dc.creator.none.fl_str_mv Ascolani Yael, Julian Esteban
Montenegro Hernandez, Alejandra
Garcés, Diana Andrea
Liu, Quinyuan
Wang, Hongqian
Yakal Kremski, Kyle
Barnett, Scott
Mogni, Liliana Verónica
author Ascolani Yael, Julian Esteban
author_facet Ascolani Yael, Julian Esteban
Montenegro Hernandez, Alejandra
Garcés, Diana Andrea
Liu, Quinyuan
Wang, Hongqian
Yakal Kremski, Kyle
Barnett, Scott
Mogni, Liliana Verónica
author_role author
author2 Montenegro Hernandez, Alejandra
Garcés, Diana Andrea
Liu, Quinyuan
Wang, Hongqian
Yakal Kremski, Kyle
Barnett, Scott
Mogni, Liliana Verónica
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv CATHODE
O-ION DIFFUSION COEFFICIENT
SOLID OXIDE FUEL CELL
SURFACE EXCHANGE
topic CATHODE
O-ION DIFFUSION COEFFICIENT
SOLID OXIDE FUEL CELL
SURFACE EXCHANGE
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The research and development of new Solid Oxide Fuel Cell cathode materials is an area of intense activity. The kinetic coefficients describing the O2-reduction mechanism are the O-ion diffusion (Dchem) and the O-surface exchange coefficients (kchem). These parameters are strongly dependent on the nature of the material, both on its bulk and surface atomic and electronic structures. This review discusses the method for obtaining the kinetic coefficients through the combination of electrochemical impedance spectroscopy with focused ion-beam 3D tomography measurements on porous electrodes (3DT-EIS). The data, together with oxygen non-stoichiometry thermodynamic data, is analysed using the Adler-Lane-Steele model for macro-homogeneous porous electrodes. The results for different families of oxides are compared: single- and double-layered perovskites with O-vacancies defects, based on La-Sr cobalt ferrites (La0.6Sr0.4Co1-xFexO3-δ, x = 0.2 and 0.8) and La/Pr-Ba cobaltites (La0.5-xPrxBa0.5CoO3-δ, x = 0.0, 0.2 and 0.5), as well as Ruddlesden-Popper nickelates (Nd2NiO4 +δ) with O-interstitial defects. The analysis of the evolution of molar surface exchange rates with oxygen partial pressure provides information about the mechanisms limiting the O2-surface reaction, which generally is dissociative adsorption or dissociation-limited. At 700 ◦C in air, the La-Ba cobaltite structures, La0.5-xPrxBa0.5CoO3-δ, feature the most active surfaces (kchem≃0.5-1 10−2 cm.s−1), followed by the nickelate Nd2NiO4 +δ and the La-Sr cobalt ferrites, with kchem≃1-5 10−5 cm.s−1. The diffusion coefficients Dchem are higher for cubic perovskites than for the layered ones. For La0.6Sr0.4Co0.8Fe0.2O3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ, Dchem is 2.6 10−6 cm2.s−1 and 5.4 10−7 cm2.s−1, respectively. These values are comparable to Dchem = 1.2 10−6 cm2.s−1, observed for La0.5Ba0.5CoO3-δ. The layered structure drastically reduces the O-ion bulk diffusion, e.g. Dchem = 1.3 10−8 cm2.s−1 for the Pr0.5Ba0.5CoO3-δ double perovskite and Dchem≃2 10−7cm2.s−1 for Nd2NiO4 +δ. Finally, the analysis of the time evolution of the electrodes shows that the surface cation segregation affects both the O-ion bulk diffusion and the surface exchange rates.
Fil: Ascolani Yael, Julian Esteban. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
Fil: Montenegro Hernandez, Alejandra. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
Fil: Garcés, Diana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes; Argentina
Fil: Liu, Quinyuan. Northwestern University; Estados Unidos
Fil: Wang, Hongqian. Northwestern University; Estados Unidos
Fil: Yakal Kremski, Kyle. Northwestern University; Estados Unidos
Fil: Barnett, Scott. Northwestern University; Estados Unidos
Fil: Mogni, Liliana Verónica. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
description The research and development of new Solid Oxide Fuel Cell cathode materials is an area of intense activity. The kinetic coefficients describing the O2-reduction mechanism are the O-ion diffusion (Dchem) and the O-surface exchange coefficients (kchem). These parameters are strongly dependent on the nature of the material, both on its bulk and surface atomic and electronic structures. This review discusses the method for obtaining the kinetic coefficients through the combination of electrochemical impedance spectroscopy with focused ion-beam 3D tomography measurements on porous electrodes (3DT-EIS). The data, together with oxygen non-stoichiometry thermodynamic data, is analysed using the Adler-Lane-Steele model for macro-homogeneous porous electrodes. The results for different families of oxides are compared: single- and double-layered perovskites with O-vacancies defects, based on La-Sr cobalt ferrites (La0.6Sr0.4Co1-xFexO3-δ, x = 0.2 and 0.8) and La/Pr-Ba cobaltites (La0.5-xPrxBa0.5CoO3-δ, x = 0.0, 0.2 and 0.5), as well as Ruddlesden-Popper nickelates (Nd2NiO4 +δ) with O-interstitial defects. The analysis of the evolution of molar surface exchange rates with oxygen partial pressure provides information about the mechanisms limiting the O2-surface reaction, which generally is dissociative adsorption or dissociation-limited. At 700 ◦C in air, the La-Ba cobaltite structures, La0.5-xPrxBa0.5CoO3-δ, feature the most active surfaces (kchem≃0.5-1 10−2 cm.s−1), followed by the nickelate Nd2NiO4 +δ and the La-Sr cobalt ferrites, with kchem≃1-5 10−5 cm.s−1. The diffusion coefficients Dchem are higher for cubic perovskites than for the layered ones. For La0.6Sr0.4Co0.8Fe0.2O3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ, Dchem is 2.6 10−6 cm2.s−1 and 5.4 10−7 cm2.s−1, respectively. These values are comparable to Dchem = 1.2 10−6 cm2.s−1, observed for La0.5Ba0.5CoO3-δ. The layered structure drastically reduces the O-ion bulk diffusion, e.g. Dchem = 1.3 10−8 cm2.s−1 for the Pr0.5Ba0.5CoO3-δ double perovskite and Dchem≃2 10−7cm2.s−1 for Nd2NiO4 +δ. Finally, the analysis of the time evolution of the electrodes shows that the surface cation segregation affects both the O-ion bulk diffusion and the surface exchange rates.
publishDate 2020
dc.date.none.fl_str_mv 2020-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/146662
Ascolani Yael, Julian Esteban; Montenegro Hernandez, Alejandra; Garcés, Diana Andrea; Liu, Quinyuan; Wang, Hongqian; et al.; The oxygen reduction reaction in solid oxide fuel cells: From kinetic parameters measurements to electrode design; IOP Publishing; JPhys Energy; 2; 4; 10-2020; 1-29
2515-7655
CONICET Digital
CONICET
url http://hdl.handle.net/11336/146662
identifier_str_mv Ascolani Yael, Julian Esteban; Montenegro Hernandez, Alejandra; Garcés, Diana Andrea; Liu, Quinyuan; Wang, Hongqian; et al.; The oxygen reduction reaction in solid oxide fuel cells: From kinetic parameters measurements to electrode design; IOP Publishing; JPhys Energy; 2; 4; 10-2020; 1-29
2515-7655
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2515-7655/abb4ec
info:eu-repo/semantics/altIdentifier/doi/10.1088/2515-7655/abb4ec
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614126409613312
score 13.070432