Dynamic vaccination in partially overlapped multiplex network

Autores
Alvarez Zuzek, Lucila Gisele; Di Muro, Matias Alberto; Havlin, S.; Braunstein, Lidia Adriana
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we propose and investigate a strategy of vaccination which we call "dynamic vaccination." In our model, susceptible people become aware that one or more of their contacts are infected and thereby get vaccinated with probability ω, before having physical contact with any infected patient. Then the nonvaccinated individuals will be infected with probability β. We apply the strategy to the susceptible-infected-recovered epidemic model in a multiplex network composed by two networks, where a fraction q of the nodes acts in both networks. We map this model of dynamic vaccination into bond percolation model and use the generating functions framework to predict theoretically the behavior of the relevant magnitudes of the system at the steady state. We find a perfect agreement between the solutions of the theoretical equations and the results of stochastic simulations. In addition, we find an interesting phase diagram in the plane β-ω, which is composed of an epidemic and a nonepidemic phase, separated by a critical threshold line βc, which depends on q. As q decreases, βc increases, i.e., as the overlap decreases, the system is more disconnected, and therefore more virulent diseases are needed to spread epidemics. Surprisingly, we find that, for all values of q, a region in the diagram where the vaccination is so efficient that, regardless of the virulence of the disease, it never becomes an epidemic. We compare our strategy with random immunization and find that, using the same amount of vaccines for both scenarios, we obtain that the spread of disease is much lower in the case of dynamic vaccination when compared to random immunization. Furthermore, we also compare our strategy with targeted immunization and we find that, depending on ω, dynamic vaccination will perform significantly better and in some cases will stop the disease before it becomes an epidemic.
Fil: Alvarez Zuzek, Lucila Gisele. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp | Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp; Argentina
Fil: Di Muro, Matias Alberto. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp | Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp; Argentina
Fil: Havlin, S.. Bar-ilan University; Israel
Fil: Braunstein, Lidia Adriana. Boston University; Estados Unidos
Materia
SPREADING DISEASES MODEL
MULTIPLEX NETWORKS
BOND PERCOLATION
GENERATING FUNCTION FRAMEWORK
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/120229

id CONICETDig_921ded1ed3041246327e798def8c7626
oai_identifier_str oai:ri.conicet.gov.ar:11336/120229
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dynamic vaccination in partially overlapped multiplex networkAlvarez Zuzek, Lucila GiseleDi Muro, Matias AlbertoHavlin, S.Braunstein, Lidia AdrianaSPREADING DISEASES MODELMULTIPLEX NETWORKSBOND PERCOLATIONGENERATING FUNCTION FRAMEWORKhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this work we propose and investigate a strategy of vaccination which we call "dynamic vaccination." In our model, susceptible people become aware that one or more of their contacts are infected and thereby get vaccinated with probability ω, before having physical contact with any infected patient. Then the nonvaccinated individuals will be infected with probability β. We apply the strategy to the susceptible-infected-recovered epidemic model in a multiplex network composed by two networks, where a fraction q of the nodes acts in both networks. We map this model of dynamic vaccination into bond percolation model and use the generating functions framework to predict theoretically the behavior of the relevant magnitudes of the system at the steady state. We find a perfect agreement between the solutions of the theoretical equations and the results of stochastic simulations. In addition, we find an interesting phase diagram in the plane β-ω, which is composed of an epidemic and a nonepidemic phase, separated by a critical threshold line βc, which depends on q. As q decreases, βc increases, i.e., as the overlap decreases, the system is more disconnected, and therefore more virulent diseases are needed to spread epidemics. Surprisingly, we find that, for all values of q, a region in the diagram where the vaccination is so efficient that, regardless of the virulence of the disease, it never becomes an epidemic. We compare our strategy with random immunization and find that, using the same amount of vaccines for both scenarios, we obtain that the spread of disease is much lower in the case of dynamic vaccination when compared to random immunization. Furthermore, we also compare our strategy with targeted immunization and we find that, depending on ω, dynamic vaccination will perform significantly better and in some cases will stop the disease before it becomes an epidemic.Fil: Alvarez Zuzek, Lucila Gisele. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp | Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp; ArgentinaFil: Di Muro, Matias Alberto. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp | Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp; ArgentinaFil: Havlin, S.. Bar-ilan University; IsraelFil: Braunstein, Lidia Adriana. Boston University; Estados UnidosAmerican Physical Society2019-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/120229Alvarez Zuzek, Lucila Gisele; Di Muro, Matias Alberto; Havlin, S.; Braunstein, Lidia Adriana; Dynamic vaccination in partially overlapped multiplex network; American Physical Society; Physical Review E; 99; 1; 1-20192470-0045CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.99.012302info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.99.012302info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:52Zoai:ri.conicet.gov.ar:11336/120229instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:53.127CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dynamic vaccination in partially overlapped multiplex network
title Dynamic vaccination in partially overlapped multiplex network
spellingShingle Dynamic vaccination in partially overlapped multiplex network
Alvarez Zuzek, Lucila Gisele
SPREADING DISEASES MODEL
MULTIPLEX NETWORKS
BOND PERCOLATION
GENERATING FUNCTION FRAMEWORK
title_short Dynamic vaccination in partially overlapped multiplex network
title_full Dynamic vaccination in partially overlapped multiplex network
title_fullStr Dynamic vaccination in partially overlapped multiplex network
title_full_unstemmed Dynamic vaccination in partially overlapped multiplex network
title_sort Dynamic vaccination in partially overlapped multiplex network
dc.creator.none.fl_str_mv Alvarez Zuzek, Lucila Gisele
Di Muro, Matias Alberto
Havlin, S.
Braunstein, Lidia Adriana
author Alvarez Zuzek, Lucila Gisele
author_facet Alvarez Zuzek, Lucila Gisele
Di Muro, Matias Alberto
Havlin, S.
Braunstein, Lidia Adriana
author_role author
author2 Di Muro, Matias Alberto
Havlin, S.
Braunstein, Lidia Adriana
author2_role author
author
author
dc.subject.none.fl_str_mv SPREADING DISEASES MODEL
MULTIPLEX NETWORKS
BOND PERCOLATION
GENERATING FUNCTION FRAMEWORK
topic SPREADING DISEASES MODEL
MULTIPLEX NETWORKS
BOND PERCOLATION
GENERATING FUNCTION FRAMEWORK
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work we propose and investigate a strategy of vaccination which we call "dynamic vaccination." In our model, susceptible people become aware that one or more of their contacts are infected and thereby get vaccinated with probability ω, before having physical contact with any infected patient. Then the nonvaccinated individuals will be infected with probability β. We apply the strategy to the susceptible-infected-recovered epidemic model in a multiplex network composed by two networks, where a fraction q of the nodes acts in both networks. We map this model of dynamic vaccination into bond percolation model and use the generating functions framework to predict theoretically the behavior of the relevant magnitudes of the system at the steady state. We find a perfect agreement between the solutions of the theoretical equations and the results of stochastic simulations. In addition, we find an interesting phase diagram in the plane β-ω, which is composed of an epidemic and a nonepidemic phase, separated by a critical threshold line βc, which depends on q. As q decreases, βc increases, i.e., as the overlap decreases, the system is more disconnected, and therefore more virulent diseases are needed to spread epidemics. Surprisingly, we find that, for all values of q, a region in the diagram where the vaccination is so efficient that, regardless of the virulence of the disease, it never becomes an epidemic. We compare our strategy with random immunization and find that, using the same amount of vaccines for both scenarios, we obtain that the spread of disease is much lower in the case of dynamic vaccination when compared to random immunization. Furthermore, we also compare our strategy with targeted immunization and we find that, depending on ω, dynamic vaccination will perform significantly better and in some cases will stop the disease before it becomes an epidemic.
Fil: Alvarez Zuzek, Lucila Gisele. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp | Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp; Argentina
Fil: Di Muro, Matias Alberto. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp | Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp; Argentina
Fil: Havlin, S.. Bar-ilan University; Israel
Fil: Braunstein, Lidia Adriana. Boston University; Estados Unidos
description In this work we propose and investigate a strategy of vaccination which we call "dynamic vaccination." In our model, susceptible people become aware that one or more of their contacts are infected and thereby get vaccinated with probability ω, before having physical contact with any infected patient. Then the nonvaccinated individuals will be infected with probability β. We apply the strategy to the susceptible-infected-recovered epidemic model in a multiplex network composed by two networks, where a fraction q of the nodes acts in both networks. We map this model of dynamic vaccination into bond percolation model and use the generating functions framework to predict theoretically the behavior of the relevant magnitudes of the system at the steady state. We find a perfect agreement between the solutions of the theoretical equations and the results of stochastic simulations. In addition, we find an interesting phase diagram in the plane β-ω, which is composed of an epidemic and a nonepidemic phase, separated by a critical threshold line βc, which depends on q. As q decreases, βc increases, i.e., as the overlap decreases, the system is more disconnected, and therefore more virulent diseases are needed to spread epidemics. Surprisingly, we find that, for all values of q, a region in the diagram where the vaccination is so efficient that, regardless of the virulence of the disease, it never becomes an epidemic. We compare our strategy with random immunization and find that, using the same amount of vaccines for both scenarios, we obtain that the spread of disease is much lower in the case of dynamic vaccination when compared to random immunization. Furthermore, we also compare our strategy with targeted immunization and we find that, depending on ω, dynamic vaccination will perform significantly better and in some cases will stop the disease before it becomes an epidemic.
publishDate 2019
dc.date.none.fl_str_mv 2019-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/120229
Alvarez Zuzek, Lucila Gisele; Di Muro, Matias Alberto; Havlin, S.; Braunstein, Lidia Adriana; Dynamic vaccination in partially overlapped multiplex network; American Physical Society; Physical Review E; 99; 1; 1-2019
2470-0045
CONICET Digital
CONICET
url http://hdl.handle.net/11336/120229
identifier_str_mv Alvarez Zuzek, Lucila Gisele; Di Muro, Matias Alberto; Havlin, S.; Braunstein, Lidia Adriana; Dynamic vaccination in partially overlapped multiplex network; American Physical Society; Physical Review E; 99; 1; 1-2019
2470-0045
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.99.012302
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.99.012302
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268822573154304
score 13.13397