Dynamic vaccination in partially overlapped multiplex network
- Autores
- Alvarez Zuzek, Lucila Gisele; Di Muro, Matias Alberto; Havlin, S.; Braunstein, Lidia Adriana
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we propose and investigate a strategy of vaccination which we call "dynamic vaccination." In our model, susceptible people become aware that one or more of their contacts are infected and thereby get vaccinated with probability ω, before having physical contact with any infected patient. Then the nonvaccinated individuals will be infected with probability β. We apply the strategy to the susceptible-infected-recovered epidemic model in a multiplex network composed by two networks, where a fraction q of the nodes acts in both networks. We map this model of dynamic vaccination into bond percolation model and use the generating functions framework to predict theoretically the behavior of the relevant magnitudes of the system at the steady state. We find a perfect agreement between the solutions of the theoretical equations and the results of stochastic simulations. In addition, we find an interesting phase diagram in the plane β-ω, which is composed of an epidemic and a nonepidemic phase, separated by a critical threshold line βc, which depends on q. As q decreases, βc increases, i.e., as the overlap decreases, the system is more disconnected, and therefore more virulent diseases are needed to spread epidemics. Surprisingly, we find that, for all values of q, a region in the diagram where the vaccination is so efficient that, regardless of the virulence of the disease, it never becomes an epidemic. We compare our strategy with random immunization and find that, using the same amount of vaccines for both scenarios, we obtain that the spread of disease is much lower in the case of dynamic vaccination when compared to random immunization. Furthermore, we also compare our strategy with targeted immunization and we find that, depending on ω, dynamic vaccination will perform significantly better and in some cases will stop the disease before it becomes an epidemic.
Fil: Alvarez Zuzek, Lucila Gisele. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp | Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp; Argentina
Fil: Di Muro, Matias Alberto. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp | Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp; Argentina
Fil: Havlin, S.. Bar-ilan University; Israel
Fil: Braunstein, Lidia Adriana. Boston University; Estados Unidos - Materia
-
SPREADING DISEASES MODEL
MULTIPLEX NETWORKS
BOND PERCOLATION
GENERATING FUNCTION FRAMEWORK - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/120229
Ver los metadatos del registro completo
id |
CONICETDig_921ded1ed3041246327e798def8c7626 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/120229 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dynamic vaccination in partially overlapped multiplex networkAlvarez Zuzek, Lucila GiseleDi Muro, Matias AlbertoHavlin, S.Braunstein, Lidia AdrianaSPREADING DISEASES MODELMULTIPLEX NETWORKSBOND PERCOLATIONGENERATING FUNCTION FRAMEWORKhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this work we propose and investigate a strategy of vaccination which we call "dynamic vaccination." In our model, susceptible people become aware that one or more of their contacts are infected and thereby get vaccinated with probability ω, before having physical contact with any infected patient. Then the nonvaccinated individuals will be infected with probability β. We apply the strategy to the susceptible-infected-recovered epidemic model in a multiplex network composed by two networks, where a fraction q of the nodes acts in both networks. We map this model of dynamic vaccination into bond percolation model and use the generating functions framework to predict theoretically the behavior of the relevant magnitudes of the system at the steady state. We find a perfect agreement between the solutions of the theoretical equations and the results of stochastic simulations. In addition, we find an interesting phase diagram in the plane β-ω, which is composed of an epidemic and a nonepidemic phase, separated by a critical threshold line βc, which depends on q. As q decreases, βc increases, i.e., as the overlap decreases, the system is more disconnected, and therefore more virulent diseases are needed to spread epidemics. Surprisingly, we find that, for all values of q, a region in the diagram where the vaccination is so efficient that, regardless of the virulence of the disease, it never becomes an epidemic. We compare our strategy with random immunization and find that, using the same amount of vaccines for both scenarios, we obtain that the spread of disease is much lower in the case of dynamic vaccination when compared to random immunization. Furthermore, we also compare our strategy with targeted immunization and we find that, depending on ω, dynamic vaccination will perform significantly better and in some cases will stop the disease before it becomes an epidemic.Fil: Alvarez Zuzek, Lucila Gisele. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp | Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp; ArgentinaFil: Di Muro, Matias Alberto. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp | Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp; ArgentinaFil: Havlin, S.. Bar-ilan University; IsraelFil: Braunstein, Lidia Adriana. Boston University; Estados UnidosAmerican Physical Society2019-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/120229Alvarez Zuzek, Lucila Gisele; Di Muro, Matias Alberto; Havlin, S.; Braunstein, Lidia Adriana; Dynamic vaccination in partially overlapped multiplex network; American Physical Society; Physical Review E; 99; 1; 1-20192470-0045CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.99.012302info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.99.012302info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:52Zoai:ri.conicet.gov.ar:11336/120229instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:53.127CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dynamic vaccination in partially overlapped multiplex network |
title |
Dynamic vaccination in partially overlapped multiplex network |
spellingShingle |
Dynamic vaccination in partially overlapped multiplex network Alvarez Zuzek, Lucila Gisele SPREADING DISEASES MODEL MULTIPLEX NETWORKS BOND PERCOLATION GENERATING FUNCTION FRAMEWORK |
title_short |
Dynamic vaccination in partially overlapped multiplex network |
title_full |
Dynamic vaccination in partially overlapped multiplex network |
title_fullStr |
Dynamic vaccination in partially overlapped multiplex network |
title_full_unstemmed |
Dynamic vaccination in partially overlapped multiplex network |
title_sort |
Dynamic vaccination in partially overlapped multiplex network |
dc.creator.none.fl_str_mv |
Alvarez Zuzek, Lucila Gisele Di Muro, Matias Alberto Havlin, S. Braunstein, Lidia Adriana |
author |
Alvarez Zuzek, Lucila Gisele |
author_facet |
Alvarez Zuzek, Lucila Gisele Di Muro, Matias Alberto Havlin, S. Braunstein, Lidia Adriana |
author_role |
author |
author2 |
Di Muro, Matias Alberto Havlin, S. Braunstein, Lidia Adriana |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
SPREADING DISEASES MODEL MULTIPLEX NETWORKS BOND PERCOLATION GENERATING FUNCTION FRAMEWORK |
topic |
SPREADING DISEASES MODEL MULTIPLEX NETWORKS BOND PERCOLATION GENERATING FUNCTION FRAMEWORK |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work we propose and investigate a strategy of vaccination which we call "dynamic vaccination." In our model, susceptible people become aware that one or more of their contacts are infected and thereby get vaccinated with probability ω, before having physical contact with any infected patient. Then the nonvaccinated individuals will be infected with probability β. We apply the strategy to the susceptible-infected-recovered epidemic model in a multiplex network composed by two networks, where a fraction q of the nodes acts in both networks. We map this model of dynamic vaccination into bond percolation model and use the generating functions framework to predict theoretically the behavior of the relevant magnitudes of the system at the steady state. We find a perfect agreement between the solutions of the theoretical equations and the results of stochastic simulations. In addition, we find an interesting phase diagram in the plane β-ω, which is composed of an epidemic and a nonepidemic phase, separated by a critical threshold line βc, which depends on q. As q decreases, βc increases, i.e., as the overlap decreases, the system is more disconnected, and therefore more virulent diseases are needed to spread epidemics. Surprisingly, we find that, for all values of q, a region in the diagram where the vaccination is so efficient that, regardless of the virulence of the disease, it never becomes an epidemic. We compare our strategy with random immunization and find that, using the same amount of vaccines for both scenarios, we obtain that the spread of disease is much lower in the case of dynamic vaccination when compared to random immunization. Furthermore, we also compare our strategy with targeted immunization and we find that, depending on ω, dynamic vaccination will perform significantly better and in some cases will stop the disease before it becomes an epidemic. Fil: Alvarez Zuzek, Lucila Gisele. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp | Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp; Argentina Fil: Di Muro, Matias Alberto. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp | Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata. Grupo de Investigación del Departamento de Química de la Unmdp; Argentina Fil: Havlin, S.. Bar-ilan University; Israel Fil: Braunstein, Lidia Adriana. Boston University; Estados Unidos |
description |
In this work we propose and investigate a strategy of vaccination which we call "dynamic vaccination." In our model, susceptible people become aware that one or more of their contacts are infected and thereby get vaccinated with probability ω, before having physical contact with any infected patient. Then the nonvaccinated individuals will be infected with probability β. We apply the strategy to the susceptible-infected-recovered epidemic model in a multiplex network composed by two networks, where a fraction q of the nodes acts in both networks. We map this model of dynamic vaccination into bond percolation model and use the generating functions framework to predict theoretically the behavior of the relevant magnitudes of the system at the steady state. We find a perfect agreement between the solutions of the theoretical equations and the results of stochastic simulations. In addition, we find an interesting phase diagram in the plane β-ω, which is composed of an epidemic and a nonepidemic phase, separated by a critical threshold line βc, which depends on q. As q decreases, βc increases, i.e., as the overlap decreases, the system is more disconnected, and therefore more virulent diseases are needed to spread epidemics. Surprisingly, we find that, for all values of q, a region in the diagram where the vaccination is so efficient that, regardless of the virulence of the disease, it never becomes an epidemic. We compare our strategy with random immunization and find that, using the same amount of vaccines for both scenarios, we obtain that the spread of disease is much lower in the case of dynamic vaccination when compared to random immunization. Furthermore, we also compare our strategy with targeted immunization and we find that, depending on ω, dynamic vaccination will perform significantly better and in some cases will stop the disease before it becomes an epidemic. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/120229 Alvarez Zuzek, Lucila Gisele; Di Muro, Matias Alberto; Havlin, S.; Braunstein, Lidia Adriana; Dynamic vaccination in partially overlapped multiplex network; American Physical Society; Physical Review E; 99; 1; 1-2019 2470-0045 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/120229 |
identifier_str_mv |
Alvarez Zuzek, Lucila Gisele; Di Muro, Matias Alberto; Havlin, S.; Braunstein, Lidia Adriana; Dynamic vaccination in partially overlapped multiplex network; American Physical Society; Physical Review E; 99; 1; 1-2019 2470-0045 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.99.012302 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.99.012302 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268822573154304 |
score |
13.13397 |