Stability of a liquid ring on a substrate

Autores
Gonzalez, Alejandro Guillermo; Diez, Javier Alberto; Kondic, Lour
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the stability of a viscous incompressible fluid ring on a partially wetting substrate within the framework of long-wave theory. We discuss the conditions under which a static equilibrium of the ring is possible in the presence of contact angle hysteresis. A linear stability analysis (LSA) of this equilibrium solution is carried out by using a slip model to account for the contact line divergence. The LSA provides specific predictions regarding the evolution of unstable modes. In order to describe the evolution of the ring for longer times, a quasi-static approximation is implemented. This approach assumes a quasi-static evolution and takes into account the concomitant variation of the instantaneous growth rates of the modes responsible for either collapse of the ring into a single central drop or breakup into a number of droplets along the ring periphery. We compare the results of the LSA and the quasi-static model approach with those obtained from nonlinear numerical simulations using a complementary disjoining pressure model. We find remarkably good agreement between the predictions of the two models regarding the expected number of drops forming during the breakup process.
Fil: Gonzalez, Alejandro Guillermo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Fisica Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; Argentina
Fil: Diez, Javier Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Fisica Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; Argentina
Fil: Kondic, Lour. University Heights. New Jersey Institute of Technology. Department of Mathematical Sciences; Estados Unidos
Materia
Instability
Contact Line Hysteresis
Slip Length
Disjoining Pressure
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/4576

id CONICETDig_91ff4052eeded706d1dabeba17fe098a
oai_identifier_str oai:ri.conicet.gov.ar:11336/4576
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Stability of a liquid ring on a substrateGonzalez, Alejandro GuillermoDiez, Javier AlbertoKondic, LourInstabilityContact Line HysteresisSlip LengthDisjoining Pressurehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the stability of a viscous incompressible fluid ring on a partially wetting substrate within the framework of long-wave theory. We discuss the conditions under which a static equilibrium of the ring is possible in the presence of contact angle hysteresis. A linear stability analysis (LSA) of this equilibrium solution is carried out by using a slip model to account for the contact line divergence. The LSA provides specific predictions regarding the evolution of unstable modes. In order to describe the evolution of the ring for longer times, a quasi-static approximation is implemented. This approach assumes a quasi-static evolution and takes into account the concomitant variation of the instantaneous growth rates of the modes responsible for either collapse of the ring into a single central drop or breakup into a number of droplets along the ring periphery. We compare the results of the LSA and the quasi-static model approach with those obtained from nonlinear numerical simulations using a complementary disjoining pressure model. We find remarkably good agreement between the predictions of the two models regarding the expected number of drops forming during the breakup process.Fil: Gonzalez, Alejandro Guillermo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Fisica Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; ArgentinaFil: Diez, Javier Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Fisica Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; ArgentinaFil: Kondic, Lour. University Heights. New Jersey Institute of Technology. Department of Mathematical Sciences; Estados UnidosCambridge University Press2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4576Gonzalez, Alejandro Guillermo; Diez, Javier Alberto; Kondic, Lour; Stability of a liquid ring on a substrate; Cambridge University Press; Journal of Fluid Mechanics; 718; 3-2013; 246-2790022-1120enginfo:eu-repo/semantics/altIdentifier/url/http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8830038&fileId=S0022112012006076info:eu-repo/semantics/altIdentifier/doi/10.1017/jfm.2012.607info:eu-repo/semantics/altIdentifier/issn/0022-1120info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:28Zoai:ri.conicet.gov.ar:11336/4576instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:28.344CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Stability of a liquid ring on a substrate
title Stability of a liquid ring on a substrate
spellingShingle Stability of a liquid ring on a substrate
Gonzalez, Alejandro Guillermo
Instability
Contact Line Hysteresis
Slip Length
Disjoining Pressure
title_short Stability of a liquid ring on a substrate
title_full Stability of a liquid ring on a substrate
title_fullStr Stability of a liquid ring on a substrate
title_full_unstemmed Stability of a liquid ring on a substrate
title_sort Stability of a liquid ring on a substrate
dc.creator.none.fl_str_mv Gonzalez, Alejandro Guillermo
Diez, Javier Alberto
Kondic, Lour
author Gonzalez, Alejandro Guillermo
author_facet Gonzalez, Alejandro Guillermo
Diez, Javier Alberto
Kondic, Lour
author_role author
author2 Diez, Javier Alberto
Kondic, Lour
author2_role author
author
dc.subject.none.fl_str_mv Instability
Contact Line Hysteresis
Slip Length
Disjoining Pressure
topic Instability
Contact Line Hysteresis
Slip Length
Disjoining Pressure
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the stability of a viscous incompressible fluid ring on a partially wetting substrate within the framework of long-wave theory. We discuss the conditions under which a static equilibrium of the ring is possible in the presence of contact angle hysteresis. A linear stability analysis (LSA) of this equilibrium solution is carried out by using a slip model to account for the contact line divergence. The LSA provides specific predictions regarding the evolution of unstable modes. In order to describe the evolution of the ring for longer times, a quasi-static approximation is implemented. This approach assumes a quasi-static evolution and takes into account the concomitant variation of the instantaneous growth rates of the modes responsible for either collapse of the ring into a single central drop or breakup into a number of droplets along the ring periphery. We compare the results of the LSA and the quasi-static model approach with those obtained from nonlinear numerical simulations using a complementary disjoining pressure model. We find remarkably good agreement between the predictions of the two models regarding the expected number of drops forming during the breakup process.
Fil: Gonzalez, Alejandro Guillermo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Fisica Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; Argentina
Fil: Diez, Javier Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Fisica Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; Argentina
Fil: Kondic, Lour. University Heights. New Jersey Institute of Technology. Department of Mathematical Sciences; Estados Unidos
description We study the stability of a viscous incompressible fluid ring on a partially wetting substrate within the framework of long-wave theory. We discuss the conditions under which a static equilibrium of the ring is possible in the presence of contact angle hysteresis. A linear stability analysis (LSA) of this equilibrium solution is carried out by using a slip model to account for the contact line divergence. The LSA provides specific predictions regarding the evolution of unstable modes. In order to describe the evolution of the ring for longer times, a quasi-static approximation is implemented. This approach assumes a quasi-static evolution and takes into account the concomitant variation of the instantaneous growth rates of the modes responsible for either collapse of the ring into a single central drop or breakup into a number of droplets along the ring periphery. We compare the results of the LSA and the quasi-static model approach with those obtained from nonlinear numerical simulations using a complementary disjoining pressure model. We find remarkably good agreement between the predictions of the two models regarding the expected number of drops forming during the breakup process.
publishDate 2013
dc.date.none.fl_str_mv 2013-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/4576
Gonzalez, Alejandro Guillermo; Diez, Javier Alberto; Kondic, Lour; Stability of a liquid ring on a substrate; Cambridge University Press; Journal of Fluid Mechanics; 718; 3-2013; 246-279
0022-1120
url http://hdl.handle.net/11336/4576
identifier_str_mv Gonzalez, Alejandro Guillermo; Diez, Javier Alberto; Kondic, Lour; Stability of a liquid ring on a substrate; Cambridge University Press; Journal of Fluid Mechanics; 718; 3-2013; 246-279
0022-1120
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8830038&fileId=S0022112012006076
info:eu-repo/semantics/altIdentifier/doi/10.1017/jfm.2012.607
info:eu-repo/semantics/altIdentifier/issn/0022-1120
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cambridge University Press
publisher.none.fl_str_mv Cambridge University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269960144945152
score 13.13397