Stability of a liquid ring on a substrate
- Autores
- Gonzalez, Alejandro Guillermo; Diez, Javier Alberto; Kondic, Lour
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the stability of a viscous incompressible fluid ring on a partially wetting substrate within the framework of long-wave theory. We discuss the conditions under which a static equilibrium of the ring is possible in the presence of contact angle hysteresis. A linear stability analysis (LSA) of this equilibrium solution is carried out by using a slip model to account for the contact line divergence. The LSA provides specific predictions regarding the evolution of unstable modes. In order to describe the evolution of the ring for longer times, a quasi-static approximation is implemented. This approach assumes a quasi-static evolution and takes into account the concomitant variation of the instantaneous growth rates of the modes responsible for either collapse of the ring into a single central drop or breakup into a number of droplets along the ring periphery. We compare the results of the LSA and the quasi-static model approach with those obtained from nonlinear numerical simulations using a complementary disjoining pressure model. We find remarkably good agreement between the predictions of the two models regarding the expected number of drops forming during the breakup process.
Fil: Gonzalez, Alejandro Guillermo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Fisica Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; Argentina
Fil: Diez, Javier Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Fisica Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; Argentina
Fil: Kondic, Lour. University Heights. New Jersey Institute of Technology. Department of Mathematical Sciences; Estados Unidos - Materia
-
Instability
Contact Line Hysteresis
Slip Length
Disjoining Pressure - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/4576
Ver los metadatos del registro completo
id |
CONICETDig_91ff4052eeded706d1dabeba17fe098a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/4576 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Stability of a liquid ring on a substrateGonzalez, Alejandro GuillermoDiez, Javier AlbertoKondic, LourInstabilityContact Line HysteresisSlip LengthDisjoining Pressurehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the stability of a viscous incompressible fluid ring on a partially wetting substrate within the framework of long-wave theory. We discuss the conditions under which a static equilibrium of the ring is possible in the presence of contact angle hysteresis. A linear stability analysis (LSA) of this equilibrium solution is carried out by using a slip model to account for the contact line divergence. The LSA provides specific predictions regarding the evolution of unstable modes. In order to describe the evolution of the ring for longer times, a quasi-static approximation is implemented. This approach assumes a quasi-static evolution and takes into account the concomitant variation of the instantaneous growth rates of the modes responsible for either collapse of the ring into a single central drop or breakup into a number of droplets along the ring periphery. We compare the results of the LSA and the quasi-static model approach with those obtained from nonlinear numerical simulations using a complementary disjoining pressure model. We find remarkably good agreement between the predictions of the two models regarding the expected number of drops forming during the breakup process.Fil: Gonzalez, Alejandro Guillermo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Fisica Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; ArgentinaFil: Diez, Javier Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Fisica Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; ArgentinaFil: Kondic, Lour. University Heights. New Jersey Institute of Technology. Department of Mathematical Sciences; Estados UnidosCambridge University Press2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4576Gonzalez, Alejandro Guillermo; Diez, Javier Alberto; Kondic, Lour; Stability of a liquid ring on a substrate; Cambridge University Press; Journal of Fluid Mechanics; 718; 3-2013; 246-2790022-1120enginfo:eu-repo/semantics/altIdentifier/url/http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8830038&fileId=S0022112012006076info:eu-repo/semantics/altIdentifier/doi/10.1017/jfm.2012.607info:eu-repo/semantics/altIdentifier/issn/0022-1120info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:28Zoai:ri.conicet.gov.ar:11336/4576instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:28.344CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Stability of a liquid ring on a substrate |
title |
Stability of a liquid ring on a substrate |
spellingShingle |
Stability of a liquid ring on a substrate Gonzalez, Alejandro Guillermo Instability Contact Line Hysteresis Slip Length Disjoining Pressure |
title_short |
Stability of a liquid ring on a substrate |
title_full |
Stability of a liquid ring on a substrate |
title_fullStr |
Stability of a liquid ring on a substrate |
title_full_unstemmed |
Stability of a liquid ring on a substrate |
title_sort |
Stability of a liquid ring on a substrate |
dc.creator.none.fl_str_mv |
Gonzalez, Alejandro Guillermo Diez, Javier Alberto Kondic, Lour |
author |
Gonzalez, Alejandro Guillermo |
author_facet |
Gonzalez, Alejandro Guillermo Diez, Javier Alberto Kondic, Lour |
author_role |
author |
author2 |
Diez, Javier Alberto Kondic, Lour |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Instability Contact Line Hysteresis Slip Length Disjoining Pressure |
topic |
Instability Contact Line Hysteresis Slip Length Disjoining Pressure |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the stability of a viscous incompressible fluid ring on a partially wetting substrate within the framework of long-wave theory. We discuss the conditions under which a static equilibrium of the ring is possible in the presence of contact angle hysteresis. A linear stability analysis (LSA) of this equilibrium solution is carried out by using a slip model to account for the contact line divergence. The LSA provides specific predictions regarding the evolution of unstable modes. In order to describe the evolution of the ring for longer times, a quasi-static approximation is implemented. This approach assumes a quasi-static evolution and takes into account the concomitant variation of the instantaneous growth rates of the modes responsible for either collapse of the ring into a single central drop or breakup into a number of droplets along the ring periphery. We compare the results of the LSA and the quasi-static model approach with those obtained from nonlinear numerical simulations using a complementary disjoining pressure model. We find remarkably good agreement between the predictions of the two models regarding the expected number of drops forming during the breakup process. Fil: Gonzalez, Alejandro Guillermo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Fisica Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; Argentina Fil: Diez, Javier Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Fisica Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; Argentina Fil: Kondic, Lour. University Heights. New Jersey Institute of Technology. Department of Mathematical Sciences; Estados Unidos |
description |
We study the stability of a viscous incompressible fluid ring on a partially wetting substrate within the framework of long-wave theory. We discuss the conditions under which a static equilibrium of the ring is possible in the presence of contact angle hysteresis. A linear stability analysis (LSA) of this equilibrium solution is carried out by using a slip model to account for the contact line divergence. The LSA provides specific predictions regarding the evolution of unstable modes. In order to describe the evolution of the ring for longer times, a quasi-static approximation is implemented. This approach assumes a quasi-static evolution and takes into account the concomitant variation of the instantaneous growth rates of the modes responsible for either collapse of the ring into a single central drop or breakup into a number of droplets along the ring periphery. We compare the results of the LSA and the quasi-static model approach with those obtained from nonlinear numerical simulations using a complementary disjoining pressure model. We find remarkably good agreement between the predictions of the two models regarding the expected number of drops forming during the breakup process. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/4576 Gonzalez, Alejandro Guillermo; Diez, Javier Alberto; Kondic, Lour; Stability of a liquid ring on a substrate; Cambridge University Press; Journal of Fluid Mechanics; 718; 3-2013; 246-279 0022-1120 |
url |
http://hdl.handle.net/11336/4576 |
identifier_str_mv |
Gonzalez, Alejandro Guillermo; Diez, Javier Alberto; Kondic, Lour; Stability of a liquid ring on a substrate; Cambridge University Press; Journal of Fluid Mechanics; 718; 3-2013; 246-279 0022-1120 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8830038&fileId=S0022112012006076 info:eu-repo/semantics/altIdentifier/doi/10.1017/jfm.2012.607 info:eu-repo/semantics/altIdentifier/issn/0022-1120 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269960144945152 |
score |
13.13397 |