Breakup of Thin Liquid Filaments on Partially Wetting Substrates: from Micrometric to Nanometric Scales

Autores
Diez, Javier Alberto; Gonzalez, Alejandro Guillermo
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present theoretical and experimental results regarding the instability of a thin liquid film in the form a long filament sitted on a solid substrate. We consider this problem in two different scenarios, namely, at submillimetric and nanometric scales, and we study their free surface instability. In the first scale, we take into account the effects due to surface tension and gravity, while in the smaller scale, we add intermolecular interaction and neglect gravity. The flows are modeled within the long wave approximation, which leads to a nonlinear fourth-order differential equation for the fluid thickness. This model equation also includes the partial wetting condition between the liquid and the solid. In the theoretical models, we analyze the linear stability of the equilibrium configurations. The linear stability analyses lead to eigenvalue problems that are solved using pseudo spectral methods in the submillimetric case, and finite differences in the nanoscale. Whenever possible, the theoretical results are compared with experiments performed on a submillimetric scale (silicon oils on glass), as well as on nanometric scale (nickel films melted by laser irradiation on SiO2 substrates).
Fil: Diez, Javier Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina
Fil: Gonzalez, Alejandro Guillermo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina
Materia
Disjoining Pressure
Instabilities
Surface Tension
Thin Liquid Films
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55162

id CONICETDig_adf3cf37adef8dc8f911cf747cc550a0
oai_identifier_str oai:ri.conicet.gov.ar:11336/55162
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Breakup of Thin Liquid Filaments on Partially Wetting Substrates: from Micrometric to Nanometric ScalesDiez, Javier AlbertoGonzalez, Alejandro GuillermoDisjoining PressureInstabilitiesSurface TensionThin Liquid Filmshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2We present theoretical and experimental results regarding the instability of a thin liquid film in the form a long filament sitted on a solid substrate. We consider this problem in two different scenarios, namely, at submillimetric and nanometric scales, and we study their free surface instability. In the first scale, we take into account the effects due to surface tension and gravity, while in the smaller scale, we add intermolecular interaction and neglect gravity. The flows are modeled within the long wave approximation, which leads to a nonlinear fourth-order differential equation for the fluid thickness. This model equation also includes the partial wetting condition between the liquid and the solid. In the theoretical models, we analyze the linear stability of the equilibrium configurations. The linear stability analyses lead to eigenvalue problems that are solved using pseudo spectral methods in the submillimetric case, and finite differences in the nanoscale. Whenever possible, the theoretical results are compared with experiments performed on a submillimetric scale (silicon oils on glass), as well as on nanometric scale (nickel films melted by laser irradiation on SiO2 substrates).Fil: Diez, Javier Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; ArgentinaFil: Gonzalez, Alejandro Guillermo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; ArgentinaSoc Brasileira Fisica2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55162Diez, Javier Alberto; Gonzalez, Alejandro Guillermo; Breakup of Thin Liquid Filaments on Partially Wetting Substrates: from Micrometric to Nanometric Scales; Soc Brasileira Fisica; Brazilian Journal Of Physics; 46; 2; 4-2016; 225-2370103-9733CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s13538-015-0392-1info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs13538-015-0392-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:34Zoai:ri.conicet.gov.ar:11336/55162instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:34.637CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Breakup of Thin Liquid Filaments on Partially Wetting Substrates: from Micrometric to Nanometric Scales
title Breakup of Thin Liquid Filaments on Partially Wetting Substrates: from Micrometric to Nanometric Scales
spellingShingle Breakup of Thin Liquid Filaments on Partially Wetting Substrates: from Micrometric to Nanometric Scales
Diez, Javier Alberto
Disjoining Pressure
Instabilities
Surface Tension
Thin Liquid Films
title_short Breakup of Thin Liquid Filaments on Partially Wetting Substrates: from Micrometric to Nanometric Scales
title_full Breakup of Thin Liquid Filaments on Partially Wetting Substrates: from Micrometric to Nanometric Scales
title_fullStr Breakup of Thin Liquid Filaments on Partially Wetting Substrates: from Micrometric to Nanometric Scales
title_full_unstemmed Breakup of Thin Liquid Filaments on Partially Wetting Substrates: from Micrometric to Nanometric Scales
title_sort Breakup of Thin Liquid Filaments on Partially Wetting Substrates: from Micrometric to Nanometric Scales
dc.creator.none.fl_str_mv Diez, Javier Alberto
Gonzalez, Alejandro Guillermo
author Diez, Javier Alberto
author_facet Diez, Javier Alberto
Gonzalez, Alejandro Guillermo
author_role author
author2 Gonzalez, Alejandro Guillermo
author2_role author
dc.subject.none.fl_str_mv Disjoining Pressure
Instabilities
Surface Tension
Thin Liquid Films
topic Disjoining Pressure
Instabilities
Surface Tension
Thin Liquid Films
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv We present theoretical and experimental results regarding the instability of a thin liquid film in the form a long filament sitted on a solid substrate. We consider this problem in two different scenarios, namely, at submillimetric and nanometric scales, and we study their free surface instability. In the first scale, we take into account the effects due to surface tension and gravity, while in the smaller scale, we add intermolecular interaction and neglect gravity. The flows are modeled within the long wave approximation, which leads to a nonlinear fourth-order differential equation for the fluid thickness. This model equation also includes the partial wetting condition between the liquid and the solid. In the theoretical models, we analyze the linear stability of the equilibrium configurations. The linear stability analyses lead to eigenvalue problems that are solved using pseudo spectral methods in the submillimetric case, and finite differences in the nanoscale. Whenever possible, the theoretical results are compared with experiments performed on a submillimetric scale (silicon oils on glass), as well as on nanometric scale (nickel films melted by laser irradiation on SiO2 substrates).
Fil: Diez, Javier Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina
Fil: Gonzalez, Alejandro Guillermo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina
description We present theoretical and experimental results regarding the instability of a thin liquid film in the form a long filament sitted on a solid substrate. We consider this problem in two different scenarios, namely, at submillimetric and nanometric scales, and we study their free surface instability. In the first scale, we take into account the effects due to surface tension and gravity, while in the smaller scale, we add intermolecular interaction and neglect gravity. The flows are modeled within the long wave approximation, which leads to a nonlinear fourth-order differential equation for the fluid thickness. This model equation also includes the partial wetting condition between the liquid and the solid. In the theoretical models, we analyze the linear stability of the equilibrium configurations. The linear stability analyses lead to eigenvalue problems that are solved using pseudo spectral methods in the submillimetric case, and finite differences in the nanoscale. Whenever possible, the theoretical results are compared with experiments performed on a submillimetric scale (silicon oils on glass), as well as on nanometric scale (nickel films melted by laser irradiation on SiO2 substrates).
publishDate 2016
dc.date.none.fl_str_mv 2016-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55162
Diez, Javier Alberto; Gonzalez, Alejandro Guillermo; Breakup of Thin Liquid Filaments on Partially Wetting Substrates: from Micrometric to Nanometric Scales; Soc Brasileira Fisica; Brazilian Journal Of Physics; 46; 2; 4-2016; 225-237
0103-9733
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55162
identifier_str_mv Diez, Javier Alberto; Gonzalez, Alejandro Guillermo; Breakup of Thin Liquid Filaments on Partially Wetting Substrates: from Micrometric to Nanometric Scales; Soc Brasileira Fisica; Brazilian Journal Of Physics; 46; 2; 4-2016; 225-237
0103-9733
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s13538-015-0392-1
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs13538-015-0392-1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Soc Brasileira Fisica
publisher.none.fl_str_mv Soc Brasileira Fisica
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269039489974272
score 13.13397