Lipid peroxidation modifies the picture of membranes from the “Fluid Mosaic Model” to the “Lipid Whisker Model”
- Autores
- Catala, Angel
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The “Fluid Mosaic Model”, described by Singer and Nicolson, explain both how a cell membrane preserves a critical barrier function while it concomitantly facilitates rapid lateral diffusion of proteins and lipids within the planar membrane surface. However, the lipid components of biological plasma membranes are not regularly distributed. They are thought to contain “rafts” e nano-domains enriched in sphingolipids and cholesterol that are distinct from surrounding membranes of unsaturated phospholipids. Cholesterol and fatty acids adjust the transport and diffusion of molecular oxygen in membranes. The presence of cholesterol and saturated phospholipids decreases oxygen permeability across the membrane. Alpha-tocopherol, the main antioxidant in biological membranes, partition into domains that are enriched in polyunsaturated phospholipids increasing the concentration of the vitamin in the place where it is most required. On the basis of these observations, it is possible to assume that non-raft domains enriched in phospholipids containing PUFAs and vitamin E will be more accessible by molecular oxygen than lipid raft domains enriched in sphingolipids and cholesterol. This situation will render some nano-domains more sensitive to lipid peroxidation than others. Phospholipid oxidation products are very likely to alter the properties of biological membranes, because their polarity and shape may differ considerably from the structures of their parent molecules. Addition of a polar oxygen atom to several peroxidized fatty acids reorients the acyl chain whereby it no longer remains buried within the membrane interior, but rather projects into the aqueous environment “Lipid Whisker Model”. This exceptional conformational change facilitates direct physical access of the oxidized fatty acid moiety to cell surface scavenger receptors.
Fil: Catala, Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina - Materia
-
Lipid Peroxidation
Fluid Mosaic Model
Lipid Rafts
Lipid Whisker Model - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/5229
Ver los metadatos del registro completo
id |
CONICETDig_91bb42e98bc941e45c0ac46eb8b266f1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/5229 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Lipid peroxidation modifies the picture of membranes from the “Fluid Mosaic Model” to the “Lipid Whisker Model”Catala, AngelLipid PeroxidationFluid Mosaic ModelLipid RaftsLipid Whisker Modelhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The “Fluid Mosaic Model”, described by Singer and Nicolson, explain both how a cell membrane preserves a critical barrier function while it concomitantly facilitates rapid lateral diffusion of proteins and lipids within the planar membrane surface. However, the lipid components of biological plasma membranes are not regularly distributed. They are thought to contain “rafts” e nano-domains enriched in sphingolipids and cholesterol that are distinct from surrounding membranes of unsaturated phospholipids. Cholesterol and fatty acids adjust the transport and diffusion of molecular oxygen in membranes. The presence of cholesterol and saturated phospholipids decreases oxygen permeability across the membrane. Alpha-tocopherol, the main antioxidant in biological membranes, partition into domains that are enriched in polyunsaturated phospholipids increasing the concentration of the vitamin in the place where it is most required. On the basis of these observations, it is possible to assume that non-raft domains enriched in phospholipids containing PUFAs and vitamin E will be more accessible by molecular oxygen than lipid raft domains enriched in sphingolipids and cholesterol. This situation will render some nano-domains more sensitive to lipid peroxidation than others. Phospholipid oxidation products are very likely to alter the properties of biological membranes, because their polarity and shape may differ considerably from the structures of their parent molecules. Addition of a polar oxygen atom to several peroxidized fatty acids reorients the acyl chain whereby it no longer remains buried within the membrane interior, but rather projects into the aqueous environment “Lipid Whisker Model”. This exceptional conformational change facilitates direct physical access of the oxidized fatty acid moiety to cell surface scavenger receptors.Fil: Catala, Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaElsevier Masson2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5229Catala, Angel; Lipid peroxidation modifies the picture of membranes from the “Fluid Mosaic Model” to the “Lipid Whisker Model”; Elsevier Masson; Biochimie; 94; 1; 1-2012; 101-1090300-9084enginfo:eu-repo/semantics/altIdentifier/pmid/21983178info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1016/j.biochi.2011.09.025info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0300908411003762info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:35Zoai:ri.conicet.gov.ar:11336/5229instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:36.224CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Lipid peroxidation modifies the picture of membranes from the “Fluid Mosaic Model” to the “Lipid Whisker Model” |
title |
Lipid peroxidation modifies the picture of membranes from the “Fluid Mosaic Model” to the “Lipid Whisker Model” |
spellingShingle |
Lipid peroxidation modifies the picture of membranes from the “Fluid Mosaic Model” to the “Lipid Whisker Model” Catala, Angel Lipid Peroxidation Fluid Mosaic Model Lipid Rafts Lipid Whisker Model |
title_short |
Lipid peroxidation modifies the picture of membranes from the “Fluid Mosaic Model” to the “Lipid Whisker Model” |
title_full |
Lipid peroxidation modifies the picture of membranes from the “Fluid Mosaic Model” to the “Lipid Whisker Model” |
title_fullStr |
Lipid peroxidation modifies the picture of membranes from the “Fluid Mosaic Model” to the “Lipid Whisker Model” |
title_full_unstemmed |
Lipid peroxidation modifies the picture of membranes from the “Fluid Mosaic Model” to the “Lipid Whisker Model” |
title_sort |
Lipid peroxidation modifies the picture of membranes from the “Fluid Mosaic Model” to the “Lipid Whisker Model” |
dc.creator.none.fl_str_mv |
Catala, Angel |
author |
Catala, Angel |
author_facet |
Catala, Angel |
author_role |
author |
dc.subject.none.fl_str_mv |
Lipid Peroxidation Fluid Mosaic Model Lipid Rafts Lipid Whisker Model |
topic |
Lipid Peroxidation Fluid Mosaic Model Lipid Rafts Lipid Whisker Model |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The “Fluid Mosaic Model”, described by Singer and Nicolson, explain both how a cell membrane preserves a critical barrier function while it concomitantly facilitates rapid lateral diffusion of proteins and lipids within the planar membrane surface. However, the lipid components of biological plasma membranes are not regularly distributed. They are thought to contain “rafts” e nano-domains enriched in sphingolipids and cholesterol that are distinct from surrounding membranes of unsaturated phospholipids. Cholesterol and fatty acids adjust the transport and diffusion of molecular oxygen in membranes. The presence of cholesterol and saturated phospholipids decreases oxygen permeability across the membrane. Alpha-tocopherol, the main antioxidant in biological membranes, partition into domains that are enriched in polyunsaturated phospholipids increasing the concentration of the vitamin in the place where it is most required. On the basis of these observations, it is possible to assume that non-raft domains enriched in phospholipids containing PUFAs and vitamin E will be more accessible by molecular oxygen than lipid raft domains enriched in sphingolipids and cholesterol. This situation will render some nano-domains more sensitive to lipid peroxidation than others. Phospholipid oxidation products are very likely to alter the properties of biological membranes, because their polarity and shape may differ considerably from the structures of their parent molecules. Addition of a polar oxygen atom to several peroxidized fatty acids reorients the acyl chain whereby it no longer remains buried within the membrane interior, but rather projects into the aqueous environment “Lipid Whisker Model”. This exceptional conformational change facilitates direct physical access of the oxidized fatty acid moiety to cell surface scavenger receptors. Fil: Catala, Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina |
description |
The “Fluid Mosaic Model”, described by Singer and Nicolson, explain both how a cell membrane preserves a critical barrier function while it concomitantly facilitates rapid lateral diffusion of proteins and lipids within the planar membrane surface. However, the lipid components of biological plasma membranes are not regularly distributed. They are thought to contain “rafts” e nano-domains enriched in sphingolipids and cholesterol that are distinct from surrounding membranes of unsaturated phospholipids. Cholesterol and fatty acids adjust the transport and diffusion of molecular oxygen in membranes. The presence of cholesterol and saturated phospholipids decreases oxygen permeability across the membrane. Alpha-tocopherol, the main antioxidant in biological membranes, partition into domains that are enriched in polyunsaturated phospholipids increasing the concentration of the vitamin in the place where it is most required. On the basis of these observations, it is possible to assume that non-raft domains enriched in phospholipids containing PUFAs and vitamin E will be more accessible by molecular oxygen than lipid raft domains enriched in sphingolipids and cholesterol. This situation will render some nano-domains more sensitive to lipid peroxidation than others. Phospholipid oxidation products are very likely to alter the properties of biological membranes, because their polarity and shape may differ considerably from the structures of their parent molecules. Addition of a polar oxygen atom to several peroxidized fatty acids reorients the acyl chain whereby it no longer remains buried within the membrane interior, but rather projects into the aqueous environment “Lipid Whisker Model”. This exceptional conformational change facilitates direct physical access of the oxidized fatty acid moiety to cell surface scavenger receptors. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/5229 Catala, Angel; Lipid peroxidation modifies the picture of membranes from the “Fluid Mosaic Model” to the “Lipid Whisker Model”; Elsevier Masson; Biochimie; 94; 1; 1-2012; 101-109 0300-9084 |
url |
http://hdl.handle.net/11336/5229 |
identifier_str_mv |
Catala, Angel; Lipid peroxidation modifies the picture of membranes from the “Fluid Mosaic Model” to the “Lipid Whisker Model”; Elsevier Masson; Biochimie; 94; 1; 1-2012; 101-109 0300-9084 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/pmid/21983178 info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/doi/10.1016/j.biochi.2011.09.025 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0300908411003762 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Masson |
publisher.none.fl_str_mv |
Elsevier Masson |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613110045868032 |
score |
13.070432 |