Comment on ‘Improving series convergence: The simple pendulum and beyond’

Autores
Fernández, Francisco Marcelo
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this comment we analyze the improved series proposed by Duki et al (2018 Eur. J. Phys. 39 065802) for the approximate calculation of a variety of physical quantities like the period of the simple pendulum and an integral of the exponential of a two-dimensional potential-energy function. We show that the application of the approach to the latter case is unnecessary because both the expansion coefficients and the original problem are given in terms of a similar error function. Present results for the straightforward expansion with exact analytic coefficients do not show the oscillatory behaviour exhibited by the calculations of those authors. We give reasons why the improved approach of Duki et al may not be suitable for the treatment of many realistic physical problems.
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Materia
EXPANSION POINT
IMPROVED SERIES
PERTURBATION THEORY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/171651

id CONICETDig_919ccaee6f4dea37c2099a33f8815cf4
oai_identifier_str oai:ri.conicet.gov.ar:11336/171651
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Comment on ‘Improving series convergence: The simple pendulum and beyond’Fernández, Francisco MarceloEXPANSION POINTIMPROVED SERIESPERTURBATION THEORYhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In this comment we analyze the improved series proposed by Duki et al (2018 Eur. J. Phys. 39 065802) for the approximate calculation of a variety of physical quantities like the period of the simple pendulum and an integral of the exponential of a two-dimensional potential-energy function. We show that the application of the approach to the latter case is unnecessary because both the expansion coefficients and the original problem are given in terms of a similar error function. Present results for the straightforward expansion with exact analytic coefficients do not show the oscillatory behaviour exhibited by the calculations of those authors. We give reasons why the improved approach of Duki et al may not be suitable for the treatment of many realistic physical problems.Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaIOP Publishing2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/171651Fernández, Francisco Marcelo; Comment on ‘Improving series convergence: The simple pendulum and beyond’; IOP Publishing; European Journal of Physics; 42; 2; 3-2021; 1-50143-0807CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-6404/abcdddinfo:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6404/abcdddinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:41Zoai:ri.conicet.gov.ar:11336/171651instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:42.069CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Comment on ‘Improving series convergence: The simple pendulum and beyond’
title Comment on ‘Improving series convergence: The simple pendulum and beyond’
spellingShingle Comment on ‘Improving series convergence: The simple pendulum and beyond’
Fernández, Francisco Marcelo
EXPANSION POINT
IMPROVED SERIES
PERTURBATION THEORY
title_short Comment on ‘Improving series convergence: The simple pendulum and beyond’
title_full Comment on ‘Improving series convergence: The simple pendulum and beyond’
title_fullStr Comment on ‘Improving series convergence: The simple pendulum and beyond’
title_full_unstemmed Comment on ‘Improving series convergence: The simple pendulum and beyond’
title_sort Comment on ‘Improving series convergence: The simple pendulum and beyond’
dc.creator.none.fl_str_mv Fernández, Francisco Marcelo
author Fernández, Francisco Marcelo
author_facet Fernández, Francisco Marcelo
author_role author
dc.subject.none.fl_str_mv EXPANSION POINT
IMPROVED SERIES
PERTURBATION THEORY
topic EXPANSION POINT
IMPROVED SERIES
PERTURBATION THEORY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this comment we analyze the improved series proposed by Duki et al (2018 Eur. J. Phys. 39 065802) for the approximate calculation of a variety of physical quantities like the period of the simple pendulum and an integral of the exponential of a two-dimensional potential-energy function. We show that the application of the approach to the latter case is unnecessary because both the expansion coefficients and the original problem are given in terms of a similar error function. Present results for the straightforward expansion with exact analytic coefficients do not show the oscillatory behaviour exhibited by the calculations of those authors. We give reasons why the improved approach of Duki et al may not be suitable for the treatment of many realistic physical problems.
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
description In this comment we analyze the improved series proposed by Duki et al (2018 Eur. J. Phys. 39 065802) for the approximate calculation of a variety of physical quantities like the period of the simple pendulum and an integral of the exponential of a two-dimensional potential-energy function. We show that the application of the approach to the latter case is unnecessary because both the expansion coefficients and the original problem are given in terms of a similar error function. Present results for the straightforward expansion with exact analytic coefficients do not show the oscillatory behaviour exhibited by the calculations of those authors. We give reasons why the improved approach of Duki et al may not be suitable for the treatment of many realistic physical problems.
publishDate 2021
dc.date.none.fl_str_mv 2021-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/171651
Fernández, Francisco Marcelo; Comment on ‘Improving series convergence: The simple pendulum and beyond’; IOP Publishing; European Journal of Physics; 42; 2; 3-2021; 1-5
0143-0807
CONICET Digital
CONICET
url http://hdl.handle.net/11336/171651
identifier_str_mv Fernández, Francisco Marcelo; Comment on ‘Improving series convergence: The simple pendulum and beyond’; IOP Publishing; European Journal of Physics; 42; 2; 3-2021; 1-5
0143-0807
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-6404/abcddd
info:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6404/abcddd
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613036897206272
score 13.070432