Comment on ‘Improving series convergence: The simple pendulum and beyond’
- Autores
- Fernández, Francisco Marcelo
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this comment we analyze the improved series proposed by Duki et al (2018 Eur. J. Phys. 39 065802) for the approximate calculation of a variety of physical quantities like the period of the simple pendulum and an integral of the exponential of a two-dimensional potential-energy function. We show that the application of the approach to the latter case is unnecessary because both the expansion coefficients and the original problem are given in terms of a similar error function. Present results for the straightforward expansion with exact analytic coefficients do not show the oscillatory behaviour exhibited by the calculations of those authors. We give reasons why the improved approach of Duki et al may not be suitable for the treatment of many realistic physical problems.
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina - Materia
-
EXPANSION POINT
IMPROVED SERIES
PERTURBATION THEORY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/171651
Ver los metadatos del registro completo
id |
CONICETDig_919ccaee6f4dea37c2099a33f8815cf4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/171651 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Comment on ‘Improving series convergence: The simple pendulum and beyond’Fernández, Francisco MarceloEXPANSION POINTIMPROVED SERIESPERTURBATION THEORYhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In this comment we analyze the improved series proposed by Duki et al (2018 Eur. J. Phys. 39 065802) for the approximate calculation of a variety of physical quantities like the period of the simple pendulum and an integral of the exponential of a two-dimensional potential-energy function. We show that the application of the approach to the latter case is unnecessary because both the expansion coefficients and the original problem are given in terms of a similar error function. Present results for the straightforward expansion with exact analytic coefficients do not show the oscillatory behaviour exhibited by the calculations of those authors. We give reasons why the improved approach of Duki et al may not be suitable for the treatment of many realistic physical problems.Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaIOP Publishing2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/171651Fernández, Francisco Marcelo; Comment on ‘Improving series convergence: The simple pendulum and beyond’; IOP Publishing; European Journal of Physics; 42; 2; 3-2021; 1-50143-0807CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-6404/abcdddinfo:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6404/abcdddinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:41Zoai:ri.conicet.gov.ar:11336/171651instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:42.069CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Comment on ‘Improving series convergence: The simple pendulum and beyond’ |
title |
Comment on ‘Improving series convergence: The simple pendulum and beyond’ |
spellingShingle |
Comment on ‘Improving series convergence: The simple pendulum and beyond’ Fernández, Francisco Marcelo EXPANSION POINT IMPROVED SERIES PERTURBATION THEORY |
title_short |
Comment on ‘Improving series convergence: The simple pendulum and beyond’ |
title_full |
Comment on ‘Improving series convergence: The simple pendulum and beyond’ |
title_fullStr |
Comment on ‘Improving series convergence: The simple pendulum and beyond’ |
title_full_unstemmed |
Comment on ‘Improving series convergence: The simple pendulum and beyond’ |
title_sort |
Comment on ‘Improving series convergence: The simple pendulum and beyond’ |
dc.creator.none.fl_str_mv |
Fernández, Francisco Marcelo |
author |
Fernández, Francisco Marcelo |
author_facet |
Fernández, Francisco Marcelo |
author_role |
author |
dc.subject.none.fl_str_mv |
EXPANSION POINT IMPROVED SERIES PERTURBATION THEORY |
topic |
EXPANSION POINT IMPROVED SERIES PERTURBATION THEORY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this comment we analyze the improved series proposed by Duki et al (2018 Eur. J. Phys. 39 065802) for the approximate calculation of a variety of physical quantities like the period of the simple pendulum and an integral of the exponential of a two-dimensional potential-energy function. We show that the application of the approach to the latter case is unnecessary because both the expansion coefficients and the original problem are given in terms of a similar error function. Present results for the straightforward expansion with exact analytic coefficients do not show the oscillatory behaviour exhibited by the calculations of those authors. We give reasons why the improved approach of Duki et al may not be suitable for the treatment of many realistic physical problems. Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina |
description |
In this comment we analyze the improved series proposed by Duki et al (2018 Eur. J. Phys. 39 065802) for the approximate calculation of a variety of physical quantities like the period of the simple pendulum and an integral of the exponential of a two-dimensional potential-energy function. We show that the application of the approach to the latter case is unnecessary because both the expansion coefficients and the original problem are given in terms of a similar error function. Present results for the straightforward expansion with exact analytic coefficients do not show the oscillatory behaviour exhibited by the calculations of those authors. We give reasons why the improved approach of Duki et al may not be suitable for the treatment of many realistic physical problems. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/171651 Fernández, Francisco Marcelo; Comment on ‘Improving series convergence: The simple pendulum and beyond’; IOP Publishing; European Journal of Physics; 42; 2; 3-2021; 1-5 0143-0807 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/171651 |
identifier_str_mv |
Fernández, Francisco Marcelo; Comment on ‘Improving series convergence: The simple pendulum and beyond’; IOP Publishing; European Journal of Physics; 42; 2; 3-2021; 1-5 0143-0807 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-6404/abcddd info:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6404/abcddd |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613036897206272 |
score |
13.070432 |