Imposing exclusion limits on new physics with machine-learned likelihoods
- Autores
- Arganda Carreras, Ernesto; de Los Rios, Martín Emilio; Perez, Andres Daniel; Sandá Seoane, Rosa María
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Machine-Learned Likelihood (MLL) is a method that, by combining modern machine-learning techniques with likelihood-based inference tests, allows estimating the experimental sensitivity of high-dimensional data sets. Here we extend the MLL method by including the exclusion hypothesis tests and study it first on a toy model of multivariate Gaussian distributions, where the true probability distribution functions are known. We then apply it to a case of interest in the search for new physics at the LHC, in which a ′ boson decays into lepton pairs, comparing the performance of MLL for estimating 95% CL exclusion limits with respect to the prospects reported by ATLAS at 14 TeV with a luminosity of 3 ab−1.
Fil: Arganda Carreras, Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Consejo Superior de Investigaciones Científicas; España. Universidad Autónoma de Madrid; España
Fil: de Los Rios, Martín Emilio. Consejo Superior de Investigaciones Científicas; España. Universidad Autónoma de Madrid; España
Fil: Perez, Andres Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Sandá Seoane, Rosa María. Consejo Superior de Investigaciones Científicas; España. Universidad Autónoma de Madrid; España - Materia
-
BSM PHENOMENOLOGY
COLLIDER PHYSICS
LHC
MACHINE LEARNING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/213847
Ver los metadatos del registro completo
id |
CONICETDig_91668a746bafaa6b9d2abcacaa871248 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/213847 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Imposing exclusion limits on new physics with machine-learned likelihoodsArganda Carreras, Ernestode Los Rios, Martín EmilioPerez, Andres DanielSandá Seoane, Rosa MaríaBSM PHENOMENOLOGYCOLLIDER PHYSICSLHCMACHINE LEARNINGhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Machine-Learned Likelihood (MLL) is a method that, by combining modern machine-learning techniques with likelihood-based inference tests, allows estimating the experimental sensitivity of high-dimensional data sets. Here we extend the MLL method by including the exclusion hypothesis tests and study it first on a toy model of multivariate Gaussian distributions, where the true probability distribution functions are known. We then apply it to a case of interest in the search for new physics at the LHC, in which a ′ boson decays into lepton pairs, comparing the performance of MLL for estimating 95% CL exclusion limits with respect to the prospects reported by ATLAS at 14 TeV with a luminosity of 3 ab−1.Fil: Arganda Carreras, Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Consejo Superior de Investigaciones Científicas; España. Universidad Autónoma de Madrid; EspañaFil: de Los Rios, Martín Emilio. Consejo Superior de Investigaciones Científicas; España. Universidad Autónoma de Madrid; EspañaFil: Perez, Andres Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Sandá Seoane, Rosa María. Consejo Superior de Investigaciones Científicas; España. Universidad Autónoma de Madrid; EspañaSissa2022-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/213847Arganda Carreras, Ernesto; de Los Rios, Martín Emilio; Perez, Andres Daniel; Sandá Seoane, Rosa María; Imposing exclusion limits on new physics with machine-learned likelihoods; Sissa; Proceedings of Science; 2022; 10-2022; 1226-12321824-8039CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.22323/1.414.1226info:eu-repo/semantics/altIdentifier/url/https://pos.sissa.it/414/1226/pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:12Zoai:ri.conicet.gov.ar:11336/213847instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:13.163CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Imposing exclusion limits on new physics with machine-learned likelihoods |
title |
Imposing exclusion limits on new physics with machine-learned likelihoods |
spellingShingle |
Imposing exclusion limits on new physics with machine-learned likelihoods Arganda Carreras, Ernesto BSM PHENOMENOLOGY COLLIDER PHYSICS LHC MACHINE LEARNING |
title_short |
Imposing exclusion limits on new physics with machine-learned likelihoods |
title_full |
Imposing exclusion limits on new physics with machine-learned likelihoods |
title_fullStr |
Imposing exclusion limits on new physics with machine-learned likelihoods |
title_full_unstemmed |
Imposing exclusion limits on new physics with machine-learned likelihoods |
title_sort |
Imposing exclusion limits on new physics with machine-learned likelihoods |
dc.creator.none.fl_str_mv |
Arganda Carreras, Ernesto de Los Rios, Martín Emilio Perez, Andres Daniel Sandá Seoane, Rosa María |
author |
Arganda Carreras, Ernesto |
author_facet |
Arganda Carreras, Ernesto de Los Rios, Martín Emilio Perez, Andres Daniel Sandá Seoane, Rosa María |
author_role |
author |
author2 |
de Los Rios, Martín Emilio Perez, Andres Daniel Sandá Seoane, Rosa María |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
BSM PHENOMENOLOGY COLLIDER PHYSICS LHC MACHINE LEARNING |
topic |
BSM PHENOMENOLOGY COLLIDER PHYSICS LHC MACHINE LEARNING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Machine-Learned Likelihood (MLL) is a method that, by combining modern machine-learning techniques with likelihood-based inference tests, allows estimating the experimental sensitivity of high-dimensional data sets. Here we extend the MLL method by including the exclusion hypothesis tests and study it first on a toy model of multivariate Gaussian distributions, where the true probability distribution functions are known. We then apply it to a case of interest in the search for new physics at the LHC, in which a ′ boson decays into lepton pairs, comparing the performance of MLL for estimating 95% CL exclusion limits with respect to the prospects reported by ATLAS at 14 TeV with a luminosity of 3 ab−1. Fil: Arganda Carreras, Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Consejo Superior de Investigaciones Científicas; España. Universidad Autónoma de Madrid; España Fil: de Los Rios, Martín Emilio. Consejo Superior de Investigaciones Científicas; España. Universidad Autónoma de Madrid; España Fil: Perez, Andres Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Sandá Seoane, Rosa María. Consejo Superior de Investigaciones Científicas; España. Universidad Autónoma de Madrid; España |
description |
Machine-Learned Likelihood (MLL) is a method that, by combining modern machine-learning techniques with likelihood-based inference tests, allows estimating the experimental sensitivity of high-dimensional data sets. Here we extend the MLL method by including the exclusion hypothesis tests and study it first on a toy model of multivariate Gaussian distributions, where the true probability distribution functions are known. We then apply it to a case of interest in the search for new physics at the LHC, in which a ′ boson decays into lepton pairs, comparing the performance of MLL for estimating 95% CL exclusion limits with respect to the prospects reported by ATLAS at 14 TeV with a luminosity of 3 ab−1. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/213847 Arganda Carreras, Ernesto; de Los Rios, Martín Emilio; Perez, Andres Daniel; Sandá Seoane, Rosa María; Imposing exclusion limits on new physics with machine-learned likelihoods; Sissa; Proceedings of Science; 2022; 10-2022; 1226-1232 1824-8039 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/213847 |
identifier_str_mv |
Arganda Carreras, Ernesto; de Los Rios, Martín Emilio; Perez, Andres Daniel; Sandá Seoane, Rosa María; Imposing exclusion limits on new physics with machine-learned likelihoods; Sissa; Proceedings of Science; 2022; 10-2022; 1226-1232 1824-8039 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.22323/1.414.1226 info:eu-repo/semantics/altIdentifier/url/https://pos.sissa.it/414/1226/pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Sissa |
publisher.none.fl_str_mv |
Sissa |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613018593263616 |
score |
13.070432 |