LHC study of third-generation scalar leptoquarks with machine-learned likelihoods
- Autores
- Arganda Carreras, Ernesto; Díaz, Daniel Alberto; Perez, Andres Daniel; Sandá Seoane, Rosa María; Szynkman, Alejandro Andrés
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the impact of machine-learning algorithms on LHC searches for leptoquarks in final states with hadronically decaying tau leptons, multiple b-jets, and large missing transverse momentum. Pair production of scalar leptoquarks with decays only into third-generation leptons and quarks is assumed. Thanks to the use of supervised learning tools with unbinned methods to handle the high-dimensional final states, we consider simple selection cuts which would possibly translate into an improvement in the exclusion limits at the 95% confidence level for leptoquark masses with different values of their branching fraction into charged leptons. In particular, for intermediate branching fractions, we expect that the exclusion limits for leptoquark masses extend to ∼1.3 TeV. As a novelty in the implemented unbinned analysis, we include a simplified estimation of some systematic uncertainties with the aim of studying their possible impact on the stability of the results. Finally, we also present the projected sensitivity within this framework at 14 TeV for 300 fb−1 and 3000 fb−1 that extends the upper limits to ∼1.6 TeV and ∼1.8 TeV, respectively.
Fil: Arganda Carreras, Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Consejo Superior de Investigaciones Científicas; España. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Fisica Teorica;
Fil: Díaz, Daniel Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Perez, Andres Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Fisica Teorica; . Consejo Superior de Investigaciones Científicas; España
Fil: Sandá Seoane, Rosa María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Fisica Teorica; . Consejo Superior de Investigaciones Científicas; España
Fil: Szynkman, Alejandro Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina - Materia
-
BEYOND STANDARD MODEL
LHC - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/262904
Ver los metadatos del registro completo
id |
CONICETDig_5eb219b582ad179ad8eef01432d237a5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/262904 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
LHC study of third-generation scalar leptoquarks with machine-learned likelihoodsArganda Carreras, ErnestoDíaz, Daniel AlbertoPerez, Andres DanielSandá Seoane, Rosa MaríaSzynkman, Alejandro AndrésBEYOND STANDARD MODELLHChttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the impact of machine-learning algorithms on LHC searches for leptoquarks in final states with hadronically decaying tau leptons, multiple b-jets, and large missing transverse momentum. Pair production of scalar leptoquarks with decays only into third-generation leptons and quarks is assumed. Thanks to the use of supervised learning tools with unbinned methods to handle the high-dimensional final states, we consider simple selection cuts which would possibly translate into an improvement in the exclusion limits at the 95% confidence level for leptoquark masses with different values of their branching fraction into charged leptons. In particular, for intermediate branching fractions, we expect that the exclusion limits for leptoquark masses extend to ∼1.3 TeV. As a novelty in the implemented unbinned analysis, we include a simplified estimation of some systematic uncertainties with the aim of studying their possible impact on the stability of the results. Finally, we also present the projected sensitivity within this framework at 14 TeV for 300 fb−1 and 3000 fb−1 that extends the upper limits to ∼1.6 TeV and ∼1.8 TeV, respectively.Fil: Arganda Carreras, Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Consejo Superior de Investigaciones Científicas; España. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Fisica Teorica;Fil: Díaz, Daniel Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Perez, Andres Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Fisica Teorica; . Consejo Superior de Investigaciones Científicas; EspañaFil: Sandá Seoane, Rosa María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Fisica Teorica; . Consejo Superior de Investigaciones Científicas; EspañaFil: Szynkman, Alejandro Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaAmerican Physical Society2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/262904Arganda Carreras, Ernesto; Díaz, Daniel Alberto; Perez, Andres Daniel; Sandá Seoane, Rosa María; Szynkman, Alejandro Andrés; LHC study of third-generation scalar leptoquarks with machine-learned likelihoods; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 109; 5; 3-2024; 1-141550-79982470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.055032info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.109.055032info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:47:19Zoai:ri.conicet.gov.ar:11336/262904instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:19.816CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
LHC study of third-generation scalar leptoquarks with machine-learned likelihoods |
title |
LHC study of third-generation scalar leptoquarks with machine-learned likelihoods |
spellingShingle |
LHC study of third-generation scalar leptoquarks with machine-learned likelihoods Arganda Carreras, Ernesto BEYOND STANDARD MODEL LHC |
title_short |
LHC study of third-generation scalar leptoquarks with machine-learned likelihoods |
title_full |
LHC study of third-generation scalar leptoquarks with machine-learned likelihoods |
title_fullStr |
LHC study of third-generation scalar leptoquarks with machine-learned likelihoods |
title_full_unstemmed |
LHC study of third-generation scalar leptoquarks with machine-learned likelihoods |
title_sort |
LHC study of third-generation scalar leptoquarks with machine-learned likelihoods |
dc.creator.none.fl_str_mv |
Arganda Carreras, Ernesto Díaz, Daniel Alberto Perez, Andres Daniel Sandá Seoane, Rosa María Szynkman, Alejandro Andrés |
author |
Arganda Carreras, Ernesto |
author_facet |
Arganda Carreras, Ernesto Díaz, Daniel Alberto Perez, Andres Daniel Sandá Seoane, Rosa María Szynkman, Alejandro Andrés |
author_role |
author |
author2 |
Díaz, Daniel Alberto Perez, Andres Daniel Sandá Seoane, Rosa María Szynkman, Alejandro Andrés |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
BEYOND STANDARD MODEL LHC |
topic |
BEYOND STANDARD MODEL LHC |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the impact of machine-learning algorithms on LHC searches for leptoquarks in final states with hadronically decaying tau leptons, multiple b-jets, and large missing transverse momentum. Pair production of scalar leptoquarks with decays only into third-generation leptons and quarks is assumed. Thanks to the use of supervised learning tools with unbinned methods to handle the high-dimensional final states, we consider simple selection cuts which would possibly translate into an improvement in the exclusion limits at the 95% confidence level for leptoquark masses with different values of their branching fraction into charged leptons. In particular, for intermediate branching fractions, we expect that the exclusion limits for leptoquark masses extend to ∼1.3 TeV. As a novelty in the implemented unbinned analysis, we include a simplified estimation of some systematic uncertainties with the aim of studying their possible impact on the stability of the results. Finally, we also present the projected sensitivity within this framework at 14 TeV for 300 fb−1 and 3000 fb−1 that extends the upper limits to ∼1.6 TeV and ∼1.8 TeV, respectively. Fil: Arganda Carreras, Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Consejo Superior de Investigaciones Científicas; España. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Fisica Teorica; Fil: Díaz, Daniel Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Perez, Andres Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Fisica Teorica; . Consejo Superior de Investigaciones Científicas; España Fil: Sandá Seoane, Rosa María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Fisica Teorica; . Consejo Superior de Investigaciones Científicas; España Fil: Szynkman, Alejandro Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina |
description |
We study the impact of machine-learning algorithms on LHC searches for leptoquarks in final states with hadronically decaying tau leptons, multiple b-jets, and large missing transverse momentum. Pair production of scalar leptoquarks with decays only into third-generation leptons and quarks is assumed. Thanks to the use of supervised learning tools with unbinned methods to handle the high-dimensional final states, we consider simple selection cuts which would possibly translate into an improvement in the exclusion limits at the 95% confidence level for leptoquark masses with different values of their branching fraction into charged leptons. In particular, for intermediate branching fractions, we expect that the exclusion limits for leptoquark masses extend to ∼1.3 TeV. As a novelty in the implemented unbinned analysis, we include a simplified estimation of some systematic uncertainties with the aim of studying their possible impact on the stability of the results. Finally, we also present the projected sensitivity within this framework at 14 TeV for 300 fb−1 and 3000 fb−1 that extends the upper limits to ∼1.6 TeV and ∼1.8 TeV, respectively. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/262904 Arganda Carreras, Ernesto; Díaz, Daniel Alberto; Perez, Andres Daniel; Sandá Seoane, Rosa María; Szynkman, Alejandro Andrés; LHC study of third-generation scalar leptoquarks with machine-learned likelihoods; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 109; 5; 3-2024; 1-14 1550-7998 2470-0029 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/262904 |
identifier_str_mv |
Arganda Carreras, Ernesto; Díaz, Daniel Alberto; Perez, Andres Daniel; Sandá Seoane, Rosa María; Szynkman, Alejandro Andrés; LHC study of third-generation scalar leptoquarks with machine-learned likelihoods; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 109; 5; 3-2024; 1-14 1550-7998 2470-0029 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.055032 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.109.055032 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614516703232000 |
score |
13.070432 |