Canalization and Developmental Instability of the FetalSkull in a Mouse Model of Maternal Nutritional Stress

Autores
Gonzalez, Paula Natalia; Lotto, Federico Pablo; Hallgrimsson, Benedikt
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Nutritional imbalance is one of themain sources of stress in both extant and extinct humanpopulations. Restricted availability of nutrients isthought to disrupt the buffering mechanisms that con-tribute to developmental stability and canalization,resulting in increased levels of fluctuating asymmetry(FA) and phenotypic variance among individuals. How-ever, the literature is contradictory in this regard. Thisstudy assesses the effect of prenatal nutritional stresson FA and among-individual variance in cranial shapeand size using a mouse model of maternal proteinrestriction. Two sets of landmark coordinates were digi-tized in three dimensions from skulls of control and pro-tein restricted specimens at E17.5 and E18.5. We foundthat, by the end of gestation, maternal protein restric-tion resulted in a significant reduction of skull size.Fluctuating asymmetry in size and shape exceeded theamount of measurement error in all groups, but no sig-nificant differences in the magnitude of FA were foundbetween treatments. Conversely, the pattern of shapeasymmetry was affected by the environmental perturba-tion since the angles between the first eigenvectorsextracted from the covariance matrix of shape asymmet-ric component of protein restricted and control groupswere not significantly different from the expected forrandom vectors. In addition, among-individual variancein cranial shape was significantly higher in the proteinrestricted than the control group at E18.5. Overall, theresults obtained from a controlled experiment do notsupport the view of fluctuating asymmetry of cranialstructures as a reliable index for inferring nutritionalstress in human populations.
Fil: Gonzalez, Paula Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina
Fil: Lotto, Federico Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina
Fil: Hallgrimsson, Benedikt. University of Calgary; Canadá
Materia
Protein Restriction
Fluctuating Asymmetry
Phenotypic Variation
Fetal Growth
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/32642

id CONICETDig_913dc7f14a3a8b9a18000cdbe59bfd53
oai_identifier_str oai:ri.conicet.gov.ar:11336/32642
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Canalization and Developmental Instability of the FetalSkull in a Mouse Model of Maternal Nutritional StressGonzalez, Paula NataliaLotto, Federico PabloHallgrimsson, BenediktProtein RestrictionFluctuating AsymmetryPhenotypic VariationFetal Growthhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Nutritional imbalance is one of themain sources of stress in both extant and extinct humanpopulations. Restricted availability of nutrients isthought to disrupt the buffering mechanisms that con-tribute to developmental stability and canalization,resulting in increased levels of fluctuating asymmetry(FA) and phenotypic variance among individuals. How-ever, the literature is contradictory in this regard. Thisstudy assesses the effect of prenatal nutritional stresson FA and among-individual variance in cranial shapeand size using a mouse model of maternal proteinrestriction. Two sets of landmark coordinates were digi-tized in three dimensions from skulls of control and pro-tein restricted specimens at E17.5 and E18.5. We foundthat, by the end of gestation, maternal protein restric-tion resulted in a significant reduction of skull size.Fluctuating asymmetry in size and shape exceeded theamount of measurement error in all groups, but no sig-nificant differences in the magnitude of FA were foundbetween treatments. Conversely, the pattern of shapeasymmetry was affected by the environmental perturba-tion since the angles between the first eigenvectorsextracted from the covariance matrix of shape asymmet-ric component of protein restricted and control groupswere not significantly different from the expected forrandom vectors. In addition, among-individual variancein cranial shape was significantly higher in the proteinrestricted than the control group at E18.5. Overall, theresults obtained from a controlled experiment do notsupport the view of fluctuating asymmetry of cranialstructures as a reliable index for inferring nutritionalstress in human populations.Fil: Gonzalez, Paula Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; ArgentinaFil: Lotto, Federico Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; ArgentinaFil: Hallgrimsson, Benedikt. University of Calgary; CanadáWiley-liss, Div John Wiley & Sons Inc2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32642Gonzalez, Paula Natalia; Lotto, Federico Pablo; Hallgrimsson, Benedikt; Canalization and Developmental Instability of the FetalSkull in a Mouse Model of Maternal Nutritional Stress; Wiley-liss, Div John Wiley & Sons Inc; American Journal Of Physical Anthropology; 154; 4; 8-2014; 544-5530002-9483CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/ajpa.22545info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/ajpa.22545/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:38:05Zoai:ri.conicet.gov.ar:11336/32642instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:38:06.194CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Canalization and Developmental Instability of the FetalSkull in a Mouse Model of Maternal Nutritional Stress
title Canalization and Developmental Instability of the FetalSkull in a Mouse Model of Maternal Nutritional Stress
spellingShingle Canalization and Developmental Instability of the FetalSkull in a Mouse Model of Maternal Nutritional Stress
Gonzalez, Paula Natalia
Protein Restriction
Fluctuating Asymmetry
Phenotypic Variation
Fetal Growth
title_short Canalization and Developmental Instability of the FetalSkull in a Mouse Model of Maternal Nutritional Stress
title_full Canalization and Developmental Instability of the FetalSkull in a Mouse Model of Maternal Nutritional Stress
title_fullStr Canalization and Developmental Instability of the FetalSkull in a Mouse Model of Maternal Nutritional Stress
title_full_unstemmed Canalization and Developmental Instability of the FetalSkull in a Mouse Model of Maternal Nutritional Stress
title_sort Canalization and Developmental Instability of the FetalSkull in a Mouse Model of Maternal Nutritional Stress
dc.creator.none.fl_str_mv Gonzalez, Paula Natalia
Lotto, Federico Pablo
Hallgrimsson, Benedikt
author Gonzalez, Paula Natalia
author_facet Gonzalez, Paula Natalia
Lotto, Federico Pablo
Hallgrimsson, Benedikt
author_role author
author2 Lotto, Federico Pablo
Hallgrimsson, Benedikt
author2_role author
author
dc.subject.none.fl_str_mv Protein Restriction
Fluctuating Asymmetry
Phenotypic Variation
Fetal Growth
topic Protein Restriction
Fluctuating Asymmetry
Phenotypic Variation
Fetal Growth
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Nutritional imbalance is one of themain sources of stress in both extant and extinct humanpopulations. Restricted availability of nutrients isthought to disrupt the buffering mechanisms that con-tribute to developmental stability and canalization,resulting in increased levels of fluctuating asymmetry(FA) and phenotypic variance among individuals. How-ever, the literature is contradictory in this regard. Thisstudy assesses the effect of prenatal nutritional stresson FA and among-individual variance in cranial shapeand size using a mouse model of maternal proteinrestriction. Two sets of landmark coordinates were digi-tized in three dimensions from skulls of control and pro-tein restricted specimens at E17.5 and E18.5. We foundthat, by the end of gestation, maternal protein restric-tion resulted in a significant reduction of skull size.Fluctuating asymmetry in size and shape exceeded theamount of measurement error in all groups, but no sig-nificant differences in the magnitude of FA were foundbetween treatments. Conversely, the pattern of shapeasymmetry was affected by the environmental perturba-tion since the angles between the first eigenvectorsextracted from the covariance matrix of shape asymmet-ric component of protein restricted and control groupswere not significantly different from the expected forrandom vectors. In addition, among-individual variancein cranial shape was significantly higher in the proteinrestricted than the control group at E18.5. Overall, theresults obtained from a controlled experiment do notsupport the view of fluctuating asymmetry of cranialstructures as a reliable index for inferring nutritionalstress in human populations.
Fil: Gonzalez, Paula Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina
Fil: Lotto, Federico Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina
Fil: Hallgrimsson, Benedikt. University of Calgary; Canadá
description Nutritional imbalance is one of themain sources of stress in both extant and extinct humanpopulations. Restricted availability of nutrients isthought to disrupt the buffering mechanisms that con-tribute to developmental stability and canalization,resulting in increased levels of fluctuating asymmetry(FA) and phenotypic variance among individuals. How-ever, the literature is contradictory in this regard. Thisstudy assesses the effect of prenatal nutritional stresson FA and among-individual variance in cranial shapeand size using a mouse model of maternal proteinrestriction. Two sets of landmark coordinates were digi-tized in three dimensions from skulls of control and pro-tein restricted specimens at E17.5 and E18.5. We foundthat, by the end of gestation, maternal protein restric-tion resulted in a significant reduction of skull size.Fluctuating asymmetry in size and shape exceeded theamount of measurement error in all groups, but no sig-nificant differences in the magnitude of FA were foundbetween treatments. Conversely, the pattern of shapeasymmetry was affected by the environmental perturba-tion since the angles between the first eigenvectorsextracted from the covariance matrix of shape asymmet-ric component of protein restricted and control groupswere not significantly different from the expected forrandom vectors. In addition, among-individual variancein cranial shape was significantly higher in the proteinrestricted than the control group at E18.5. Overall, theresults obtained from a controlled experiment do notsupport the view of fluctuating asymmetry of cranialstructures as a reliable index for inferring nutritionalstress in human populations.
publishDate 2014
dc.date.none.fl_str_mv 2014-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/32642
Gonzalez, Paula Natalia; Lotto, Federico Pablo; Hallgrimsson, Benedikt; Canalization and Developmental Instability of the FetalSkull in a Mouse Model of Maternal Nutritional Stress; Wiley-liss, Div John Wiley & Sons Inc; American Journal Of Physical Anthropology; 154; 4; 8-2014; 544-553
0002-9483
CONICET Digital
CONICET
url http://hdl.handle.net/11336/32642
identifier_str_mv Gonzalez, Paula Natalia; Lotto, Federico Pablo; Hallgrimsson, Benedikt; Canalization and Developmental Instability of the FetalSkull in a Mouse Model of Maternal Nutritional Stress; Wiley-liss, Div John Wiley & Sons Inc; American Journal Of Physical Anthropology; 154; 4; 8-2014; 544-553
0002-9483
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/ajpa.22545
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/ajpa.22545/abstract
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley-liss, Div John Wiley & Sons Inc
publisher.none.fl_str_mv Wiley-liss, Div John Wiley & Sons Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614402908618752
score 13.070432