Analysis of round off errors with reversibility test as a dynamical indicator
- Autores
- Faranda, Davide; Mestre, Martin Federico; Turchetti, Giorgio
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We compare the divergence of orbits and the reversibility error for discrete time dynamical systems. These two quantities are used to explore the behavior of the global error induced by round off in the computation of orbits. The similarity of results found for any system we have analyzed suggests the use of the reversibility error, whose computation is straightforward since it does not require the knowledge of the exact orbit, as a dynamical indicator. The statistics of fluctuations induced by round off for an ensemble of initial conditions has been compared with the results obtained in the case of random perturbations. Significant differences are observed in the case of regular orbits due to the correlations of round off error, whereas the results obtained for the chaotic case are nearly the same. Both the reversibility error and the orbit divergence computed for the same number of iterations on the whole phase space provide an insight on the local dynamical properties with a detail comparable with other dynamical indicators based on variational methods such as the finite time maximum Lyapunov characteristic exponent, the mean exponential growth factor of nearby orbits and the smaller alignment index. For 2D symplectic maps, the differentiation between regular and chaotic regions is well full-filled. For 4D symplectic maps, the structure of the resonance web as well as the nearby weakly chaotic regions are accurately described.
Fil: Faranda, Davide. Universidad de Bologna; Italia
Fil: Mestre, Martin Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Turchetti, Giorgio. Universidad de Bologna; Italia - Materia
-
Discrete Time Dynamical Systems
Gali
Lce
Megno
Mlce
Reversibility Error
Sali
Standard Map - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/82526
Ver los metadatos del registro completo
id |
CONICETDig_90df41367673019205398e79c7dd35d8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/82526 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Analysis of round off errors with reversibility test as a dynamical indicatorFaranda, DavideMestre, Martin FedericoTurchetti, GiorgioDiscrete Time Dynamical SystemsGaliLceMegnoMlceReversibility ErrorSaliStandard Maphttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We compare the divergence of orbits and the reversibility error for discrete time dynamical systems. These two quantities are used to explore the behavior of the global error induced by round off in the computation of orbits. The similarity of results found for any system we have analyzed suggests the use of the reversibility error, whose computation is straightforward since it does not require the knowledge of the exact orbit, as a dynamical indicator. The statistics of fluctuations induced by round off for an ensemble of initial conditions has been compared with the results obtained in the case of random perturbations. Significant differences are observed in the case of regular orbits due to the correlations of round off error, whereas the results obtained for the chaotic case are nearly the same. Both the reversibility error and the orbit divergence computed for the same number of iterations on the whole phase space provide an insight on the local dynamical properties with a detail comparable with other dynamical indicators based on variational methods such as the finite time maximum Lyapunov characteristic exponent, the mean exponential growth factor of nearby orbits and the smaller alignment index. For 2D symplectic maps, the differentiation between regular and chaotic regions is well full-filled. For 4D symplectic maps, the structure of the resonance web as well as the nearby weakly chaotic regions are accurately described.Fil: Faranda, Davide. Universidad de Bologna; ItaliaFil: Mestre, Martin Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Turchetti, Giorgio. Universidad de Bologna; ItaliaWorld Scientific2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/82526Faranda, Davide; Mestre, Martin Federico; Turchetti, Giorgio; Analysis of round off errors with reversibility test as a dynamical indicator; World Scientific; International Journal Of Bifurcation And Chaos; 22; 9; 9-2012; 1250215-12502290218-1274CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S021812741250215Xinfo:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/pdf/10.1142/S021812741250215Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:11:03Zoai:ri.conicet.gov.ar:11336/82526instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:11:04.055CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Analysis of round off errors with reversibility test as a dynamical indicator |
title |
Analysis of round off errors with reversibility test as a dynamical indicator |
spellingShingle |
Analysis of round off errors with reversibility test as a dynamical indicator Faranda, Davide Discrete Time Dynamical Systems Gali Lce Megno Mlce Reversibility Error Sali Standard Map |
title_short |
Analysis of round off errors with reversibility test as a dynamical indicator |
title_full |
Analysis of round off errors with reversibility test as a dynamical indicator |
title_fullStr |
Analysis of round off errors with reversibility test as a dynamical indicator |
title_full_unstemmed |
Analysis of round off errors with reversibility test as a dynamical indicator |
title_sort |
Analysis of round off errors with reversibility test as a dynamical indicator |
dc.creator.none.fl_str_mv |
Faranda, Davide Mestre, Martin Federico Turchetti, Giorgio |
author |
Faranda, Davide |
author_facet |
Faranda, Davide Mestre, Martin Federico Turchetti, Giorgio |
author_role |
author |
author2 |
Mestre, Martin Federico Turchetti, Giorgio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Discrete Time Dynamical Systems Gali Lce Megno Mlce Reversibility Error Sali Standard Map |
topic |
Discrete Time Dynamical Systems Gali Lce Megno Mlce Reversibility Error Sali Standard Map |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We compare the divergence of orbits and the reversibility error for discrete time dynamical systems. These two quantities are used to explore the behavior of the global error induced by round off in the computation of orbits. The similarity of results found for any system we have analyzed suggests the use of the reversibility error, whose computation is straightforward since it does not require the knowledge of the exact orbit, as a dynamical indicator. The statistics of fluctuations induced by round off for an ensemble of initial conditions has been compared with the results obtained in the case of random perturbations. Significant differences are observed in the case of regular orbits due to the correlations of round off error, whereas the results obtained for the chaotic case are nearly the same. Both the reversibility error and the orbit divergence computed for the same number of iterations on the whole phase space provide an insight on the local dynamical properties with a detail comparable with other dynamical indicators based on variational methods such as the finite time maximum Lyapunov characteristic exponent, the mean exponential growth factor of nearby orbits and the smaller alignment index. For 2D symplectic maps, the differentiation between regular and chaotic regions is well full-filled. For 4D symplectic maps, the structure of the resonance web as well as the nearby weakly chaotic regions are accurately described. Fil: Faranda, Davide. Universidad de Bologna; Italia Fil: Mestre, Martin Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina Fil: Turchetti, Giorgio. Universidad de Bologna; Italia |
description |
We compare the divergence of orbits and the reversibility error for discrete time dynamical systems. These two quantities are used to explore the behavior of the global error induced by round off in the computation of orbits. The similarity of results found for any system we have analyzed suggests the use of the reversibility error, whose computation is straightforward since it does not require the knowledge of the exact orbit, as a dynamical indicator. The statistics of fluctuations induced by round off for an ensemble of initial conditions has been compared with the results obtained in the case of random perturbations. Significant differences are observed in the case of regular orbits due to the correlations of round off error, whereas the results obtained for the chaotic case are nearly the same. Both the reversibility error and the orbit divergence computed for the same number of iterations on the whole phase space provide an insight on the local dynamical properties with a detail comparable with other dynamical indicators based on variational methods such as the finite time maximum Lyapunov characteristic exponent, the mean exponential growth factor of nearby orbits and the smaller alignment index. For 2D symplectic maps, the differentiation between regular and chaotic regions is well full-filled. For 4D symplectic maps, the structure of the resonance web as well as the nearby weakly chaotic regions are accurately described. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/82526 Faranda, Davide; Mestre, Martin Federico; Turchetti, Giorgio; Analysis of round off errors with reversibility test as a dynamical indicator; World Scientific; International Journal Of Bifurcation And Chaos; 22; 9; 9-2012; 1250215-1250229 0218-1274 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/82526 |
identifier_str_mv |
Faranda, Davide; Mestre, Martin Federico; Turchetti, Giorgio; Analysis of round off errors with reversibility test as a dynamical indicator; World Scientific; International Journal Of Bifurcation And Chaos; 22; 9; 9-2012; 1250215-1250229 0218-1274 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1142/S021812741250215X info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/pdf/10.1142/S021812741250215X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614005911453696 |
score |
13.070432 |