Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit

Autores
Nieto Quintas, Felix Daniel; Tarasenko, Alexander A.; Uebing, Christian
Año de publicación
2002
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We investigate the influence of different diffusion mechanisms on the finite-size scaling behavior of the tracer surface diffusion coefficient in the close vicinity of a second order phase transition. A given diffusion mechanism emerges from a specific transition algorithm (TA) representing a microscopic model of adatom jumps on the surface. In this work we apply the Monte Carlo method to investigate a lattice gas model of repulsively interacting particles on a square lattice. For all diffusion mechanisms and lattice sizes L studied, the measured tracer surface diffusion coefficient, Dt, is a smooth function of temperature and exhibits an inflexion point at or near the critical temperature. Its derivative, ∂Dt/∂(1/kBT), exhibits cusp-like maxima which are (a) sharply pronounced and (b) converge to Tc(L = ∞) for large lattice sizes. We have analysed the finite-size behavior of Dt and obtained its critical exponent, σt, for each diffusion mechanism considered. The results show that σt is different for the different diffusion mechanism, i.e.σt depends on the choice of the TA.
Fil: Nieto Quintas, Felix Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Tarasenko, Alexander A.. Institute of Physics. National Academy of Sciences of Ukraine; Ucrania. Akademie věd České republiky; República Checa
Fil: Uebing, Christian. Rutgers University; Estados Unidos
Materia
Diffusion
Finite Size Scaling
Monte Carlo Simulation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/136446

id CONICETDig_90d42f600774fdcea95516fe2f7de2dd
oai_identifier_str oai:ri.conicet.gov.ar:11336/136446
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limitNieto Quintas, Felix DanielTarasenko, Alexander A.Uebing, ChristianDiffusionFinite Size ScalingMonte Carlo Simulationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We investigate the influence of different diffusion mechanisms on the finite-size scaling behavior of the tracer surface diffusion coefficient in the close vicinity of a second order phase transition. A given diffusion mechanism emerges from a specific transition algorithm (TA) representing a microscopic model of adatom jumps on the surface. In this work we apply the Monte Carlo method to investigate a lattice gas model of repulsively interacting particles on a square lattice. For all diffusion mechanisms and lattice sizes L studied, the measured tracer surface diffusion coefficient, Dt, is a smooth function of temperature and exhibits an inflexion point at or near the critical temperature. Its derivative, ∂Dt/∂(1/kBT), exhibits cusp-like maxima which are (a) sharply pronounced and (b) converge to Tc(L = ∞) for large lattice sizes. We have analysed the finite-size behavior of Dt and obtained its critical exponent, σt, for each diffusion mechanism considered. The results show that σt is different for the different diffusion mechanism, i.e.σt depends on the choice of the TA.Fil: Nieto Quintas, Felix Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Tarasenko, Alexander A.. Institute of Physics. National Academy of Sciences of Ukraine; Ucrania. Akademie věd České republiky; República ChecaFil: Uebing, Christian. Rutgers University; Estados UnidosRoyal Society of Chemistry2002-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/136446Nieto Quintas, Felix Daniel; Tarasenko, Alexander A.; Uebing, Christian; Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 4; 10; 12-2002; 1882-18881463-90761463-9084CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/b110413finfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2002/CP/b110413finfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:30Zoai:ri.conicet.gov.ar:11336/136446instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:30.936CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit
title Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit
spellingShingle Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit
Nieto Quintas, Felix Daniel
Diffusion
Finite Size Scaling
Monte Carlo Simulation
title_short Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit
title_full Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit
title_fullStr Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit
title_full_unstemmed Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit
title_sort Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit
dc.creator.none.fl_str_mv Nieto Quintas, Felix Daniel
Tarasenko, Alexander A.
Uebing, Christian
author Nieto Quintas, Felix Daniel
author_facet Nieto Quintas, Felix Daniel
Tarasenko, Alexander A.
Uebing, Christian
author_role author
author2 Tarasenko, Alexander A.
Uebing, Christian
author2_role author
author
dc.subject.none.fl_str_mv Diffusion
Finite Size Scaling
Monte Carlo Simulation
topic Diffusion
Finite Size Scaling
Monte Carlo Simulation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We investigate the influence of different diffusion mechanisms on the finite-size scaling behavior of the tracer surface diffusion coefficient in the close vicinity of a second order phase transition. A given diffusion mechanism emerges from a specific transition algorithm (TA) representing a microscopic model of adatom jumps on the surface. In this work we apply the Monte Carlo method to investigate a lattice gas model of repulsively interacting particles on a square lattice. For all diffusion mechanisms and lattice sizes L studied, the measured tracer surface diffusion coefficient, Dt, is a smooth function of temperature and exhibits an inflexion point at or near the critical temperature. Its derivative, ∂Dt/∂(1/kBT), exhibits cusp-like maxima which are (a) sharply pronounced and (b) converge to Tc(L = ∞) for large lattice sizes. We have analysed the finite-size behavior of Dt and obtained its critical exponent, σt, for each diffusion mechanism considered. The results show that σt is different for the different diffusion mechanism, i.e.σt depends on the choice of the TA.
Fil: Nieto Quintas, Felix Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Tarasenko, Alexander A.. Institute of Physics. National Academy of Sciences of Ukraine; Ucrania. Akademie věd České republiky; República Checa
Fil: Uebing, Christian. Rutgers University; Estados Unidos
description We investigate the influence of different diffusion mechanisms on the finite-size scaling behavior of the tracer surface diffusion coefficient in the close vicinity of a second order phase transition. A given diffusion mechanism emerges from a specific transition algorithm (TA) representing a microscopic model of adatom jumps on the surface. In this work we apply the Monte Carlo method to investigate a lattice gas model of repulsively interacting particles on a square lattice. For all diffusion mechanisms and lattice sizes L studied, the measured tracer surface diffusion coefficient, Dt, is a smooth function of temperature and exhibits an inflexion point at or near the critical temperature. Its derivative, ∂Dt/∂(1/kBT), exhibits cusp-like maxima which are (a) sharply pronounced and (b) converge to Tc(L = ∞) for large lattice sizes. We have analysed the finite-size behavior of Dt and obtained its critical exponent, σt, for each diffusion mechanism considered. The results show that σt is different for the different diffusion mechanism, i.e.σt depends on the choice of the TA.
publishDate 2002
dc.date.none.fl_str_mv 2002-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/136446
Nieto Quintas, Felix Daniel; Tarasenko, Alexander A.; Uebing, Christian; Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 4; 10; 12-2002; 1882-1888
1463-9076
1463-9084
CONICET Digital
CONICET
url http://hdl.handle.net/11336/136446
identifier_str_mv Nieto Quintas, Felix Daniel; Tarasenko, Alexander A.; Uebing, Christian; Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 4; 10; 12-2002; 1882-1888
1463-9076
1463-9084
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1039/b110413f
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2002/CP/b110413f
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270047848890368
score 13.13397