Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit
- Autores
- Nieto Quintas, Felix Daniel; Tarasenko, Alexander A.; Uebing, Christian
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We investigate the influence of different diffusion mechanisms on the finite-size scaling behavior of the tracer surface diffusion coefficient in the close vicinity of a second order phase transition. A given diffusion mechanism emerges from a specific transition algorithm (TA) representing a microscopic model of adatom jumps on the surface. In this work we apply the Monte Carlo method to investigate a lattice gas model of repulsively interacting particles on a square lattice. For all diffusion mechanisms and lattice sizes L studied, the measured tracer surface diffusion coefficient, Dt, is a smooth function of temperature and exhibits an inflexion point at or near the critical temperature. Its derivative, ∂Dt/∂(1/kBT), exhibits cusp-like maxima which are (a) sharply pronounced and (b) converge to Tc(L = ∞) for large lattice sizes. We have analysed the finite-size behavior of Dt and obtained its critical exponent, σt, for each diffusion mechanism considered. The results show that σt is different for the different diffusion mechanism, i.e.σt depends on the choice of the TA.
Fil: Nieto Quintas, Felix Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Tarasenko, Alexander A.. Institute of Physics. National Academy of Sciences of Ukraine; Ucrania. Akademie věd České republiky; República Checa
Fil: Uebing, Christian. Rutgers University; Estados Unidos - Materia
-
Diffusion
Finite Size Scaling
Monte Carlo Simulation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/136446
Ver los metadatos del registro completo
id |
CONICETDig_90d42f600774fdcea95516fe2f7de2dd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/136446 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limitNieto Quintas, Felix DanielTarasenko, Alexander A.Uebing, ChristianDiffusionFinite Size ScalingMonte Carlo Simulationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We investigate the influence of different diffusion mechanisms on the finite-size scaling behavior of the tracer surface diffusion coefficient in the close vicinity of a second order phase transition. A given diffusion mechanism emerges from a specific transition algorithm (TA) representing a microscopic model of adatom jumps on the surface. In this work we apply the Monte Carlo method to investigate a lattice gas model of repulsively interacting particles on a square lattice. For all diffusion mechanisms and lattice sizes L studied, the measured tracer surface diffusion coefficient, Dt, is a smooth function of temperature and exhibits an inflexion point at or near the critical temperature. Its derivative, ∂Dt/∂(1/kBT), exhibits cusp-like maxima which are (a) sharply pronounced and (b) converge to Tc(L = ∞) for large lattice sizes. We have analysed the finite-size behavior of Dt and obtained its critical exponent, σt, for each diffusion mechanism considered. The results show that σt is different for the different diffusion mechanism, i.e.σt depends on the choice of the TA.Fil: Nieto Quintas, Felix Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Tarasenko, Alexander A.. Institute of Physics. National Academy of Sciences of Ukraine; Ucrania. Akademie věd České republiky; República ChecaFil: Uebing, Christian. Rutgers University; Estados UnidosRoyal Society of Chemistry2002-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/136446Nieto Quintas, Felix Daniel; Tarasenko, Alexander A.; Uebing, Christian; Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 4; 10; 12-2002; 1882-18881463-90761463-9084CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/b110413finfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2002/CP/b110413finfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:30Zoai:ri.conicet.gov.ar:11336/136446instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:30.936CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit |
title |
Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit |
spellingShingle |
Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit Nieto Quintas, Felix Daniel Diffusion Finite Size Scaling Monte Carlo Simulation |
title_short |
Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit |
title_full |
Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit |
title_fullStr |
Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit |
title_full_unstemmed |
Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit |
title_sort |
Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit |
dc.creator.none.fl_str_mv |
Nieto Quintas, Felix Daniel Tarasenko, Alexander A. Uebing, Christian |
author |
Nieto Quintas, Felix Daniel |
author_facet |
Nieto Quintas, Felix Daniel Tarasenko, Alexander A. Uebing, Christian |
author_role |
author |
author2 |
Tarasenko, Alexander A. Uebing, Christian |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Diffusion Finite Size Scaling Monte Carlo Simulation |
topic |
Diffusion Finite Size Scaling Monte Carlo Simulation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We investigate the influence of different diffusion mechanisms on the finite-size scaling behavior of the tracer surface diffusion coefficient in the close vicinity of a second order phase transition. A given diffusion mechanism emerges from a specific transition algorithm (TA) representing a microscopic model of adatom jumps on the surface. In this work we apply the Monte Carlo method to investigate a lattice gas model of repulsively interacting particles on a square lattice. For all diffusion mechanisms and lattice sizes L studied, the measured tracer surface diffusion coefficient, Dt, is a smooth function of temperature and exhibits an inflexion point at or near the critical temperature. Its derivative, ∂Dt/∂(1/kBT), exhibits cusp-like maxima which are (a) sharply pronounced and (b) converge to Tc(L = ∞) for large lattice sizes. We have analysed the finite-size behavior of Dt and obtained its critical exponent, σt, for each diffusion mechanism considered. The results show that σt is different for the different diffusion mechanism, i.e.σt depends on the choice of the TA. Fil: Nieto Quintas, Felix Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Tarasenko, Alexander A.. Institute of Physics. National Academy of Sciences of Ukraine; Ucrania. Akademie věd České republiky; República Checa Fil: Uebing, Christian. Rutgers University; Estados Unidos |
description |
We investigate the influence of different diffusion mechanisms on the finite-size scaling behavior of the tracer surface diffusion coefficient in the close vicinity of a second order phase transition. A given diffusion mechanism emerges from a specific transition algorithm (TA) representing a microscopic model of adatom jumps on the surface. In this work we apply the Monte Carlo method to investigate a lattice gas model of repulsively interacting particles on a square lattice. For all diffusion mechanisms and lattice sizes L studied, the measured tracer surface diffusion coefficient, Dt, is a smooth function of temperature and exhibits an inflexion point at or near the critical temperature. Its derivative, ∂Dt/∂(1/kBT), exhibits cusp-like maxima which are (a) sharply pronounced and (b) converge to Tc(L = ∞) for large lattice sizes. We have analysed the finite-size behavior of Dt and obtained its critical exponent, σt, for each diffusion mechanism considered. The results show that σt is different for the different diffusion mechanism, i.e.σt depends on the choice of the TA. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/136446 Nieto Quintas, Felix Daniel; Tarasenko, Alexander A.; Uebing, Christian; Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 4; 10; 12-2002; 1882-1888 1463-9076 1463-9084 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/136446 |
identifier_str_mv |
Nieto Quintas, Felix Daniel; Tarasenko, Alexander A.; Uebing, Christian; Diffusion of adsorbates on single crystal surfaces of square symmetry: Finite-size scaling and the thermodynamic limit; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 4; 10; 12-2002; 1882-1888 1463-9076 1463-9084 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1039/b110413f info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2002/CP/b110413f |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270047848890368 |
score |
13.13397 |