Manganese 3×3 and 3√×3√-R30∘ structures and structural phase transition on w-GaN(0001¯) studied by scanning tunneling microscopy and first-principles theory

Autores
Chinchore, Abhijit V.; Wang, Kangkang; Shi, Meng; Mandru, Andrada; Liu, Yinghao; Haider, Muhammad; Smith, Arthur R.; Ferrari, Valeria Paola; Barral, María Andrea; Ordejón, Pablo
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Manganese deposited on the N-polar face of wurtzite gallium nitride [GaN (0001¯)] results in two unique surface reconstructions, depending on the deposition temperature. At lower temperature (less than 105∘C), it is found that a metastable 3×3 structure forms. Mild annealing of this Mn 3×3 structure leads to an irreversible phase transition to a different, much more stable 3√×3√−R30∘ structure which can withstand high-temperature annealing. Scanning tunneling microscopy (STM) and reflection high-energy electron diffraction data are compared with results from first-principles theoretical calculations. Theory finds a lowest-energy model for the 3×3 structure consisting of Mn trimers bonded to the Ga adlayer atoms but not with N atoms. The lowest-energy model for the more stable 3√×3√−R30∘ structure involves Mn atoms substituting for Ga within the Ga adlayer and thus bonding with N atoms. Tersoff-Hamman simulations of the resulting lowest-energy structural models are found to be in very good agreement with the experimental STM images.
Fil: Chinchore, Abhijit V.. Ohio University. Physics and Astronomy. Nanoscale and Quantum Phenomena Institute; Estados Unidos
Fil: Wang, Kangkang. Ohio University. Physics and Astronomy. Nanoscale and Quantum Phenomena Institute; Estados Unidos
Fil: Shi, Meng. Ohio University. Physics and Astronomy. Nanoscale and Quantum Phenomena Institute; Estados Unidos
Fil: Mandru, Andrada. Ohio University. Physics and Astronomy. Nanoscale and Quantum Phenomena Institute; Estados Unidos
Fil: Liu, Yinghao. Ohio University. Physics and Astronomy. Nanoscale and Quantum Phenomena Institute; Estados Unidos
Fil: Haider, Muhammad. Ohio University. Physics and Astronomy. Nanoscale and Quantum Phenomena Institute; Estados Unidos
Fil: Smith, Arthur R.. Ohio University. Physics and Astronomy. Nanoscale and Quantum Phenomena Institute; Estados Unidos
Fil: Ferrari, Valeria Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Gerencia de Investigación y Aplicaciones; Argentina
Fil: Barral, María Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Gerencia de Investigación y Aplicaciones; Argentina
Fil: Ordejón, Pablo. Universitat Autònoma de Barcelona. Centre d’Investigacio en Nanociencia i Nanotecnologia; España
Materia
Spintronic
Gan
Nanostructures
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/3687

id CONICETDig_90c0b09a538f7e3f7bb818f617d94d22
oai_identifier_str oai:ri.conicet.gov.ar:11336/3687
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Manganese 3×3 and 3√×3√-R30∘ structures and structural phase transition on w-GaN(0001¯) studied by scanning tunneling microscopy and first-principles theoryChinchore, Abhijit V.Wang, KangkangShi, MengMandru, AndradaLiu, YinghaoHaider, MuhammadSmith, Arthur R.Ferrari, Valeria PaolaBarral, María AndreaOrdejón, PabloSpintronicGanNanostructureshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Manganese deposited on the N-polar face of wurtzite gallium nitride [GaN (0001¯)] results in two unique surface reconstructions, depending on the deposition temperature. At lower temperature (less than 105∘C), it is found that a metastable 3×3 structure forms. Mild annealing of this Mn 3×3 structure leads to an irreversible phase transition to a different, much more stable 3√×3√−R30∘ structure which can withstand high-temperature annealing. Scanning tunneling microscopy (STM) and reflection high-energy electron diffraction data are compared with results from first-principles theoretical calculations. Theory finds a lowest-energy model for the 3×3 structure consisting of Mn trimers bonded to the Ga adlayer atoms but not with N atoms. The lowest-energy model for the more stable 3√×3√−R30∘ structure involves Mn atoms substituting for Ga within the Ga adlayer and thus bonding with N atoms. Tersoff-Hamman simulations of the resulting lowest-energy structural models are found to be in very good agreement with the experimental STM images.Fil: Chinchore, Abhijit V.. Ohio University. Physics and Astronomy. Nanoscale and Quantum Phenomena Institute; Estados UnidosFil: Wang, Kangkang. Ohio University. Physics and Astronomy. Nanoscale and Quantum Phenomena Institute; Estados UnidosFil: Shi, Meng. Ohio University. Physics and Astronomy. Nanoscale and Quantum Phenomena Institute; Estados UnidosFil: Mandru, Andrada. Ohio University. Physics and Astronomy. Nanoscale and Quantum Phenomena Institute; Estados UnidosFil: Liu, Yinghao. Ohio University. Physics and Astronomy. Nanoscale and Quantum Phenomena Institute; Estados UnidosFil: Haider, Muhammad. Ohio University. Physics and Astronomy. Nanoscale and Quantum Phenomena Institute; Estados UnidosFil: Smith, Arthur R.. Ohio University. Physics and Astronomy. Nanoscale and Quantum Phenomena Institute; Estados UnidosFil: Ferrari, Valeria Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Gerencia de Investigación y Aplicaciones; ArgentinaFil: Barral, María Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Gerencia de Investigación y Aplicaciones; ArgentinaFil: Ordejón, Pablo. Universitat Autònoma de Barcelona. Centre d’Investigacio en Nanociencia i Nanotecnologia; EspañaAmerican Physical Society2013-04-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3687Chinchore, Abhijit V.; Wang, Kangkang; Shi, Meng; Mandru, Andrada; Liu, Yinghao; et al.; Manganese 3×3 and 3√×3√-R30∘ structures and structural phase transition on w-GaN(0001¯) studied by scanning tunneling microscopy and first-principles theory; American Physical Society; Physical Review B; 87; 16; 15-4-2013; 165426-1654261098-0121enginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prb/abstract/10.1103/PhysRevB.87.165426info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.87.165426info:eu-repo/semantics/altIdentifier/issn/1098-0121info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:40Zoai:ri.conicet.gov.ar:11336/3687instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:41.095CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Manganese 3×3 and 3√×3√-R30∘ structures and structural phase transition on w-GaN(0001¯) studied by scanning tunneling microscopy and first-principles theory
title Manganese 3×3 and 3√×3√-R30∘ structures and structural phase transition on w-GaN(0001¯) studied by scanning tunneling microscopy and first-principles theory
spellingShingle Manganese 3×3 and 3√×3√-R30∘ structures and structural phase transition on w-GaN(0001¯) studied by scanning tunneling microscopy and first-principles theory
Chinchore, Abhijit V.
Spintronic
Gan
Nanostructures
title_short Manganese 3×3 and 3√×3√-R30∘ structures and structural phase transition on w-GaN(0001¯) studied by scanning tunneling microscopy and first-principles theory
title_full Manganese 3×3 and 3√×3√-R30∘ structures and structural phase transition on w-GaN(0001¯) studied by scanning tunneling microscopy and first-principles theory
title_fullStr Manganese 3×3 and 3√×3√-R30∘ structures and structural phase transition on w-GaN(0001¯) studied by scanning tunneling microscopy and first-principles theory
title_full_unstemmed Manganese 3×3 and 3√×3√-R30∘ structures and structural phase transition on w-GaN(0001¯) studied by scanning tunneling microscopy and first-principles theory
title_sort Manganese 3×3 and 3√×3√-R30∘ structures and structural phase transition on w-GaN(0001¯) studied by scanning tunneling microscopy and first-principles theory
dc.creator.none.fl_str_mv Chinchore, Abhijit V.
Wang, Kangkang
Shi, Meng
Mandru, Andrada
Liu, Yinghao
Haider, Muhammad
Smith, Arthur R.
Ferrari, Valeria Paola
Barral, María Andrea
Ordejón, Pablo
author Chinchore, Abhijit V.
author_facet Chinchore, Abhijit V.
Wang, Kangkang
Shi, Meng
Mandru, Andrada
Liu, Yinghao
Haider, Muhammad
Smith, Arthur R.
Ferrari, Valeria Paola
Barral, María Andrea
Ordejón, Pablo
author_role author
author2 Wang, Kangkang
Shi, Meng
Mandru, Andrada
Liu, Yinghao
Haider, Muhammad
Smith, Arthur R.
Ferrari, Valeria Paola
Barral, María Andrea
Ordejón, Pablo
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Spintronic
Gan
Nanostructures
topic Spintronic
Gan
Nanostructures
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Manganese deposited on the N-polar face of wurtzite gallium nitride [GaN (0001¯)] results in two unique surface reconstructions, depending on the deposition temperature. At lower temperature (less than 105∘C), it is found that a metastable 3×3 structure forms. Mild annealing of this Mn 3×3 structure leads to an irreversible phase transition to a different, much more stable 3√×3√−R30∘ structure which can withstand high-temperature annealing. Scanning tunneling microscopy (STM) and reflection high-energy electron diffraction data are compared with results from first-principles theoretical calculations. Theory finds a lowest-energy model for the 3×3 structure consisting of Mn trimers bonded to the Ga adlayer atoms but not with N atoms. The lowest-energy model for the more stable 3√×3√−R30∘ structure involves Mn atoms substituting for Ga within the Ga adlayer and thus bonding with N atoms. Tersoff-Hamman simulations of the resulting lowest-energy structural models are found to be in very good agreement with the experimental STM images.
Fil: Chinchore, Abhijit V.. Ohio University. Physics and Astronomy. Nanoscale and Quantum Phenomena Institute; Estados Unidos
Fil: Wang, Kangkang. Ohio University. Physics and Astronomy. Nanoscale and Quantum Phenomena Institute; Estados Unidos
Fil: Shi, Meng. Ohio University. Physics and Astronomy. Nanoscale and Quantum Phenomena Institute; Estados Unidos
Fil: Mandru, Andrada. Ohio University. Physics and Astronomy. Nanoscale and Quantum Phenomena Institute; Estados Unidos
Fil: Liu, Yinghao. Ohio University. Physics and Astronomy. Nanoscale and Quantum Phenomena Institute; Estados Unidos
Fil: Haider, Muhammad. Ohio University. Physics and Astronomy. Nanoscale and Quantum Phenomena Institute; Estados Unidos
Fil: Smith, Arthur R.. Ohio University. Physics and Astronomy. Nanoscale and Quantum Phenomena Institute; Estados Unidos
Fil: Ferrari, Valeria Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Gerencia de Investigación y Aplicaciones; Argentina
Fil: Barral, María Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Gerencia de Investigación y Aplicaciones; Argentina
Fil: Ordejón, Pablo. Universitat Autònoma de Barcelona. Centre d’Investigacio en Nanociencia i Nanotecnologia; España
description Manganese deposited on the N-polar face of wurtzite gallium nitride [GaN (0001¯)] results in two unique surface reconstructions, depending on the deposition temperature. At lower temperature (less than 105∘C), it is found that a metastable 3×3 structure forms. Mild annealing of this Mn 3×3 structure leads to an irreversible phase transition to a different, much more stable 3√×3√−R30∘ structure which can withstand high-temperature annealing. Scanning tunneling microscopy (STM) and reflection high-energy electron diffraction data are compared with results from first-principles theoretical calculations. Theory finds a lowest-energy model for the 3×3 structure consisting of Mn trimers bonded to the Ga adlayer atoms but not with N atoms. The lowest-energy model for the more stable 3√×3√−R30∘ structure involves Mn atoms substituting for Ga within the Ga adlayer and thus bonding with N atoms. Tersoff-Hamman simulations of the resulting lowest-energy structural models are found to be in very good agreement with the experimental STM images.
publishDate 2013
dc.date.none.fl_str_mv 2013-04-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/3687
Chinchore, Abhijit V.; Wang, Kangkang; Shi, Meng; Mandru, Andrada; Liu, Yinghao; et al.; Manganese 3×3 and 3√×3√-R30∘ structures and structural phase transition on w-GaN(0001¯) studied by scanning tunneling microscopy and first-principles theory; American Physical Society; Physical Review B; 87; 16; 15-4-2013; 165426-165426
1098-0121
url http://hdl.handle.net/11336/3687
identifier_str_mv Chinchore, Abhijit V.; Wang, Kangkang; Shi, Meng; Mandru, Andrada; Liu, Yinghao; et al.; Manganese 3×3 and 3√×3√-R30∘ structures and structural phase transition on w-GaN(0001¯) studied by scanning tunneling microscopy and first-principles theory; American Physical Society; Physical Review B; 87; 16; 15-4-2013; 165426-165426
1098-0121
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prb/abstract/10.1103/PhysRevB.87.165426
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.87.165426
info:eu-repo/semantics/altIdentifier/issn/1098-0121
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613152719765504
score 13.070432