Multiple response optimization of styrene–butadiene rubber emulsion polymerization
- Autores
- Martinez Delfa, Gerardo Esteban; Olivieri, Alejandro Cesar; Boschetti, Carlos Eugenio
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A multiple response optimization of styrene-butadiene rubber (SBR) emulsion batch polymerization is proposed. Several properties of latex and rubber were optimized to obtain a particular grade of SBR, namely 1712. Artificial neural networks (ANNs) were employed for the modelling of the following properties: solid content of latex, Mooney viscosity and polydispersity. The training was done by feeding the ANNs with experimental data obtained from a central composite design in which the concentration of some of the polymerization reagents (initiator, activator and chain transfer agent) was varied. The onedimensional desirability functionwas used for optimization, in order to obtain a single set of reaction conditions for the multiple responses. With optimum conditions, polymerization experiments were carried out and good agreementwas found between predicted and experimental values of the required properties.
Fil: Martinez Delfa, Gerardo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Petrobras Energia S.a.-planta Puerto Gr.san Martin; Argentina
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Boschetti, Carlos Eugenio. Petrobras Energia S.a.-planta Puerto Gr.san Martin; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina - Materia
-
SBR
Emulsion polymerization
Artificial neural networks
Multiple response optimization
Desirability function - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/105022
Ver los metadatos del registro completo
id |
CONICETDig_90bc6b4385b2b400fe49ca715d4269e1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/105022 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multiple response optimization of styrene–butadiene rubber emulsion polymerizationMartinez Delfa, Gerardo EstebanOlivieri, Alejandro CesarBoschetti, Carlos EugenioSBREmulsion polymerizationArtificial neural networksMultiple response optimizationDesirability functionhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A multiple response optimization of styrene-butadiene rubber (SBR) emulsion batch polymerization is proposed. Several properties of latex and rubber were optimized to obtain a particular grade of SBR, namely 1712. Artificial neural networks (ANNs) were employed for the modelling of the following properties: solid content of latex, Mooney viscosity and polydispersity. The training was done by feeding the ANNs with experimental data obtained from a central composite design in which the concentration of some of the polymerization reagents (initiator, activator and chain transfer agent) was varied. The onedimensional desirability functionwas used for optimization, in order to obtain a single set of reaction conditions for the multiple responses. With optimum conditions, polymerization experiments were carried out and good agreementwas found between predicted and experimental values of the required properties.Fil: Martinez Delfa, Gerardo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Petrobras Energia S.a.-planta Puerto Gr.san Martin; ArgentinaFil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Boschetti, Carlos Eugenio. Petrobras Energia S.a.-planta Puerto Gr.san Martin; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaPergamon-Elsevier Science Ltd2009-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/105022Martinez Delfa, Gerardo Esteban; Olivieri, Alejandro Cesar; Boschetti, Carlos Eugenio; Multiple response optimization of styrene–butadiene rubber emulsion polymerization; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 33; 4; 4-2009; 850-8560098-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2009.01.002info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0098135409000064info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:43Zoai:ri.conicet.gov.ar:11336/105022instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:44.056CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multiple response optimization of styrene–butadiene rubber emulsion polymerization |
title |
Multiple response optimization of styrene–butadiene rubber emulsion polymerization |
spellingShingle |
Multiple response optimization of styrene–butadiene rubber emulsion polymerization Martinez Delfa, Gerardo Esteban SBR Emulsion polymerization Artificial neural networks Multiple response optimization Desirability function |
title_short |
Multiple response optimization of styrene–butadiene rubber emulsion polymerization |
title_full |
Multiple response optimization of styrene–butadiene rubber emulsion polymerization |
title_fullStr |
Multiple response optimization of styrene–butadiene rubber emulsion polymerization |
title_full_unstemmed |
Multiple response optimization of styrene–butadiene rubber emulsion polymerization |
title_sort |
Multiple response optimization of styrene–butadiene rubber emulsion polymerization |
dc.creator.none.fl_str_mv |
Martinez Delfa, Gerardo Esteban Olivieri, Alejandro Cesar Boschetti, Carlos Eugenio |
author |
Martinez Delfa, Gerardo Esteban |
author_facet |
Martinez Delfa, Gerardo Esteban Olivieri, Alejandro Cesar Boschetti, Carlos Eugenio |
author_role |
author |
author2 |
Olivieri, Alejandro Cesar Boschetti, Carlos Eugenio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
SBR Emulsion polymerization Artificial neural networks Multiple response optimization Desirability function |
topic |
SBR Emulsion polymerization Artificial neural networks Multiple response optimization Desirability function |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A multiple response optimization of styrene-butadiene rubber (SBR) emulsion batch polymerization is proposed. Several properties of latex and rubber were optimized to obtain a particular grade of SBR, namely 1712. Artificial neural networks (ANNs) were employed for the modelling of the following properties: solid content of latex, Mooney viscosity and polydispersity. The training was done by feeding the ANNs with experimental data obtained from a central composite design in which the concentration of some of the polymerization reagents (initiator, activator and chain transfer agent) was varied. The onedimensional desirability functionwas used for optimization, in order to obtain a single set of reaction conditions for the multiple responses. With optimum conditions, polymerization experiments were carried out and good agreementwas found between predicted and experimental values of the required properties. Fil: Martinez Delfa, Gerardo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Petrobras Energia S.a.-planta Puerto Gr.san Martin; Argentina Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina Fil: Boschetti, Carlos Eugenio. Petrobras Energia S.a.-planta Puerto Gr.san Martin; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina |
description |
A multiple response optimization of styrene-butadiene rubber (SBR) emulsion batch polymerization is proposed. Several properties of latex and rubber were optimized to obtain a particular grade of SBR, namely 1712. Artificial neural networks (ANNs) were employed for the modelling of the following properties: solid content of latex, Mooney viscosity and polydispersity. The training was done by feeding the ANNs with experimental data obtained from a central composite design in which the concentration of some of the polymerization reagents (initiator, activator and chain transfer agent) was varied. The onedimensional desirability functionwas used for optimization, in order to obtain a single set of reaction conditions for the multiple responses. With optimum conditions, polymerization experiments were carried out and good agreementwas found between predicted and experimental values of the required properties. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/105022 Martinez Delfa, Gerardo Esteban; Olivieri, Alejandro Cesar; Boschetti, Carlos Eugenio; Multiple response optimization of styrene–butadiene rubber emulsion polymerization; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 33; 4; 4-2009; 850-856 0098-1354 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/105022 |
identifier_str_mv |
Martinez Delfa, Gerardo Esteban; Olivieri, Alejandro Cesar; Boschetti, Carlos Eugenio; Multiple response optimization of styrene–butadiene rubber emulsion polymerization; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 33; 4; 4-2009; 850-856 0098-1354 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2009.01.002 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0098135409000064 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613998763311104 |
score |
13.070432 |