Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions
- Autores
- Ramírez, Francisco Fernando; Dundas, Daniel; Sanchez, Cristian Gabriel; Scherlis Perel, Damian Ariel; Todorov, Tchavdar N.
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The so-called driven Liouville–von Neumann equation is a dynamical formulation to simulate a voltage bias across a molecular system and to model a time-dependent current in a grand-canonical framework. This approach introduces a damping term in the equation of motion that drives the charge to a reference, out of equilibrium density. Originally proposed by Horsfield and co-workers, further work on this scheme has led to different coexisting versions of this equation. On the other hand, the multiple-probe scheme devised by Todorov and collaborators, known as the hairy-probes method, is a formal treatment based on Green’s functions that allows the electrochemical potentials in two regions of an open quantum system to be fixed. In this article, the equations of motion of the hairy-probes formalism are rewritten to show that, under certain conditions, they can assume the same algebraic structure as the driven Liouville–von Neumann equation in the form proposed by Morzan et al. (J. Chem. Phys.2017, 146, 044110). In this way, a new formal ground is provided for the latter, identifying the origin of every term. The performances of the different methods are explored using tight-binding time-dependent simulations in three trial structures, designated as ballistic, disordered, and resonant models. In the context of first-principles Hamiltonians, the driven Liouville–von Neumann approach is of special interest, because it does not require the calculation of Green’s functions. Hence, the effects of replacing the reference density based on the Green’s function by one obtained from an applied field are investigated, to gain a deeper understanding of the limitations and the range of applicability of the driven Liouville–von Neumann equation.
Fil: Ramírez, Francisco Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Fil: Dundas, Daniel. The Queens University of Belfast; Irlanda
Fil: Sanchez, Cristian Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; Argentina
Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Fil: Todorov, Tchavdar N.. The Queens University of Belfast; Irlanda - Materia
-
Tight-binding
Conductance
Electrode
Quantum dynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/121635
Ver los metadatos del registro completo
id |
CONICETDig_90bb45ed024f3f7870625029162a5f1c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/121635 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s FunctionsRamírez, Francisco FernandoDundas, DanielSanchez, Cristian GabrielScherlis Perel, Damian ArielTodorov, Tchavdar N.Tight-bindingConductanceElectrodeQuantum dynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The so-called driven Liouville–von Neumann equation is a dynamical formulation to simulate a voltage bias across a molecular system and to model a time-dependent current in a grand-canonical framework. This approach introduces a damping term in the equation of motion that drives the charge to a reference, out of equilibrium density. Originally proposed by Horsfield and co-workers, further work on this scheme has led to different coexisting versions of this equation. On the other hand, the multiple-probe scheme devised by Todorov and collaborators, known as the hairy-probes method, is a formal treatment based on Green’s functions that allows the electrochemical potentials in two regions of an open quantum system to be fixed. In this article, the equations of motion of the hairy-probes formalism are rewritten to show that, under certain conditions, they can assume the same algebraic structure as the driven Liouville–von Neumann equation in the form proposed by Morzan et al. (J. Chem. Phys.2017, 146, 044110). In this way, a new formal ground is provided for the latter, identifying the origin of every term. The performances of the different methods are explored using tight-binding time-dependent simulations in three trial structures, designated as ballistic, disordered, and resonant models. In the context of first-principles Hamiltonians, the driven Liouville–von Neumann approach is of special interest, because it does not require the calculation of Green’s functions. Hence, the effects of replacing the reference density based on the Green’s function by one obtained from an applied field are investigated, to gain a deeper understanding of the limitations and the range of applicability of the driven Liouville–von Neumann equation.Fil: Ramírez, Francisco Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Dundas, Daniel. The Queens University of Belfast; IrlandaFil: Sanchez, Cristian Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; ArgentinaFil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Todorov, Tchavdar N.. The Queens University of Belfast; IrlandaAmerican Chemical Society2019-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/121635Ramírez, Francisco Fernando; Dundas, Daniel; Sanchez, Cristian Gabriel; Scherlis Perel, Damian Ariel; Todorov, Tchavdar N.; Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions; American Chemical Society; Journal of Physical Chemistry C; 123; 20; 4-2019; 12542-125551932-74471932-7455CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.8b12319info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.8b12319info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1905.04393info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:02:34Zoai:ri.conicet.gov.ar:11336/121635instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:02:35.273CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions |
title |
Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions |
spellingShingle |
Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions Ramírez, Francisco Fernando Tight-binding Conductance Electrode Quantum dynamics |
title_short |
Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions |
title_full |
Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions |
title_fullStr |
Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions |
title_full_unstemmed |
Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions |
title_sort |
Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions |
dc.creator.none.fl_str_mv |
Ramírez, Francisco Fernando Dundas, Daniel Sanchez, Cristian Gabriel Scherlis Perel, Damian Ariel Todorov, Tchavdar N. |
author |
Ramírez, Francisco Fernando |
author_facet |
Ramírez, Francisco Fernando Dundas, Daniel Sanchez, Cristian Gabriel Scherlis Perel, Damian Ariel Todorov, Tchavdar N. |
author_role |
author |
author2 |
Dundas, Daniel Sanchez, Cristian Gabriel Scherlis Perel, Damian Ariel Todorov, Tchavdar N. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Tight-binding Conductance Electrode Quantum dynamics |
topic |
Tight-binding Conductance Electrode Quantum dynamics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The so-called driven Liouville–von Neumann equation is a dynamical formulation to simulate a voltage bias across a molecular system and to model a time-dependent current in a grand-canonical framework. This approach introduces a damping term in the equation of motion that drives the charge to a reference, out of equilibrium density. Originally proposed by Horsfield and co-workers, further work on this scheme has led to different coexisting versions of this equation. On the other hand, the multiple-probe scheme devised by Todorov and collaborators, known as the hairy-probes method, is a formal treatment based on Green’s functions that allows the electrochemical potentials in two regions of an open quantum system to be fixed. In this article, the equations of motion of the hairy-probes formalism are rewritten to show that, under certain conditions, they can assume the same algebraic structure as the driven Liouville–von Neumann equation in the form proposed by Morzan et al. (J. Chem. Phys.2017, 146, 044110). In this way, a new formal ground is provided for the latter, identifying the origin of every term. The performances of the different methods are explored using tight-binding time-dependent simulations in three trial structures, designated as ballistic, disordered, and resonant models. In the context of first-principles Hamiltonians, the driven Liouville–von Neumann approach is of special interest, because it does not require the calculation of Green’s functions. Hence, the effects of replacing the reference density based on the Green’s function by one obtained from an applied field are investigated, to gain a deeper understanding of the limitations and the range of applicability of the driven Liouville–von Neumann equation. Fil: Ramírez, Francisco Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: Dundas, Daniel. The Queens University of Belfast; Irlanda Fil: Sanchez, Cristian Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; Argentina Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: Todorov, Tchavdar N.. The Queens University of Belfast; Irlanda |
description |
The so-called driven Liouville–von Neumann equation is a dynamical formulation to simulate a voltage bias across a molecular system and to model a time-dependent current in a grand-canonical framework. This approach introduces a damping term in the equation of motion that drives the charge to a reference, out of equilibrium density. Originally proposed by Horsfield and co-workers, further work on this scheme has led to different coexisting versions of this equation. On the other hand, the multiple-probe scheme devised by Todorov and collaborators, known as the hairy-probes method, is a formal treatment based on Green’s functions that allows the electrochemical potentials in two regions of an open quantum system to be fixed. In this article, the equations of motion of the hairy-probes formalism are rewritten to show that, under certain conditions, they can assume the same algebraic structure as the driven Liouville–von Neumann equation in the form proposed by Morzan et al. (J. Chem. Phys.2017, 146, 044110). In this way, a new formal ground is provided for the latter, identifying the origin of every term. The performances of the different methods are explored using tight-binding time-dependent simulations in three trial structures, designated as ballistic, disordered, and resonant models. In the context of first-principles Hamiltonians, the driven Liouville–von Neumann approach is of special interest, because it does not require the calculation of Green’s functions. Hence, the effects of replacing the reference density based on the Green’s function by one obtained from an applied field are investigated, to gain a deeper understanding of the limitations and the range of applicability of the driven Liouville–von Neumann equation. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/121635 Ramírez, Francisco Fernando; Dundas, Daniel; Sanchez, Cristian Gabriel; Scherlis Perel, Damian Ariel; Todorov, Tchavdar N.; Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions; American Chemical Society; Journal of Physical Chemistry C; 123; 20; 4-2019; 12542-12555 1932-7447 1932-7455 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/121635 |
identifier_str_mv |
Ramírez, Francisco Fernando; Dundas, Daniel; Sanchez, Cristian Gabriel; Scherlis Perel, Damian Ariel; Todorov, Tchavdar N.; Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions; American Chemical Society; Journal of Physical Chemistry C; 123; 20; 4-2019; 12542-12555 1932-7447 1932-7455 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.8b12319 info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.8b12319 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1905.04393 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781237653405696 |
score |
12.982451 |