Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions

Autores
Ramírez, Francisco Fernando; Dundas, Daniel; Sanchez, Cristian Gabriel; Scherlis Perel, Damian Ariel; Todorov, Tchavdar N.
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The so-called driven Liouville–von Neumann equation is a dynamical formulation to simulate a voltage bias across a molecular system and to model a time-dependent current in a grand-canonical framework. This approach introduces a damping term in the equation of motion that drives the charge to a reference, out of equilibrium density. Originally proposed by Horsfield and co-workers, further work on this scheme has led to different coexisting versions of this equation. On the other hand, the multiple-probe scheme devised by Todorov and collaborators, known as the hairy-probes method, is a formal treatment based on Green’s functions that allows the electrochemical potentials in two regions of an open quantum system to be fixed. In this article, the equations of motion of the hairy-probes formalism are rewritten to show that, under certain conditions, they can assume the same algebraic structure as the driven Liouville–von Neumann equation in the form proposed by Morzan et al. (J. Chem. Phys.2017, 146, 044110). In this way, a new formal ground is provided for the latter, identifying the origin of every term. The performances of the different methods are explored using tight-binding time-dependent simulations in three trial structures, designated as ballistic, disordered, and resonant models. In the context of first-principles Hamiltonians, the driven Liouville–von Neumann approach is of special interest, because it does not require the calculation of Green’s functions. Hence, the effects of replacing the reference density based on the Green’s function by one obtained from an applied field are investigated, to gain a deeper understanding of the limitations and the range of applicability of the driven Liouville–von Neumann equation.
Fil: Ramírez, Francisco Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Fil: Dundas, Daniel. The Queens University of Belfast; Irlanda
Fil: Sanchez, Cristian Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; Argentina
Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Fil: Todorov, Tchavdar N.. The Queens University of Belfast; Irlanda
Materia
Tight-binding
Conductance
Electrode
Quantum dynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/121635

id CONICETDig_90bb45ed024f3f7870625029162a5f1c
oai_identifier_str oai:ri.conicet.gov.ar:11336/121635
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s FunctionsRamírez, Francisco FernandoDundas, DanielSanchez, Cristian GabrielScherlis Perel, Damian ArielTodorov, Tchavdar N.Tight-bindingConductanceElectrodeQuantum dynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The so-called driven Liouville–von Neumann equation is a dynamical formulation to simulate a voltage bias across a molecular system and to model a time-dependent current in a grand-canonical framework. This approach introduces a damping term in the equation of motion that drives the charge to a reference, out of equilibrium density. Originally proposed by Horsfield and co-workers, further work on this scheme has led to different coexisting versions of this equation. On the other hand, the multiple-probe scheme devised by Todorov and collaborators, known as the hairy-probes method, is a formal treatment based on Green’s functions that allows the electrochemical potentials in two regions of an open quantum system to be fixed. In this article, the equations of motion of the hairy-probes formalism are rewritten to show that, under certain conditions, they can assume the same algebraic structure as the driven Liouville–von Neumann equation in the form proposed by Morzan et al. (J. Chem. Phys.2017, 146, 044110). In this way, a new formal ground is provided for the latter, identifying the origin of every term. The performances of the different methods are explored using tight-binding time-dependent simulations in three trial structures, designated as ballistic, disordered, and resonant models. In the context of first-principles Hamiltonians, the driven Liouville–von Neumann approach is of special interest, because it does not require the calculation of Green’s functions. Hence, the effects of replacing the reference density based on the Green’s function by one obtained from an applied field are investigated, to gain a deeper understanding of the limitations and the range of applicability of the driven Liouville–von Neumann equation.Fil: Ramírez, Francisco Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Dundas, Daniel. The Queens University of Belfast; IrlandaFil: Sanchez, Cristian Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; ArgentinaFil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Todorov, Tchavdar N.. The Queens University of Belfast; IrlandaAmerican Chemical Society2019-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/121635Ramírez, Francisco Fernando; Dundas, Daniel; Sanchez, Cristian Gabriel; Scherlis Perel, Damian Ariel; Todorov, Tchavdar N.; Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions; American Chemical Society; Journal of Physical Chemistry C; 123; 20; 4-2019; 12542-125551932-74471932-7455CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.8b12319info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.8b12319info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1905.04393info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:02:34Zoai:ri.conicet.gov.ar:11336/121635instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:02:35.273CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions
title Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions
spellingShingle Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions
Ramírez, Francisco Fernando
Tight-binding
Conductance
Electrode
Quantum dynamics
title_short Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions
title_full Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions
title_fullStr Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions
title_full_unstemmed Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions
title_sort Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions
dc.creator.none.fl_str_mv Ramírez, Francisco Fernando
Dundas, Daniel
Sanchez, Cristian Gabriel
Scherlis Perel, Damian Ariel
Todorov, Tchavdar N.
author Ramírez, Francisco Fernando
author_facet Ramírez, Francisco Fernando
Dundas, Daniel
Sanchez, Cristian Gabriel
Scherlis Perel, Damian Ariel
Todorov, Tchavdar N.
author_role author
author2 Dundas, Daniel
Sanchez, Cristian Gabriel
Scherlis Perel, Damian Ariel
Todorov, Tchavdar N.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Tight-binding
Conductance
Electrode
Quantum dynamics
topic Tight-binding
Conductance
Electrode
Quantum dynamics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The so-called driven Liouville–von Neumann equation is a dynamical formulation to simulate a voltage bias across a molecular system and to model a time-dependent current in a grand-canonical framework. This approach introduces a damping term in the equation of motion that drives the charge to a reference, out of equilibrium density. Originally proposed by Horsfield and co-workers, further work on this scheme has led to different coexisting versions of this equation. On the other hand, the multiple-probe scheme devised by Todorov and collaborators, known as the hairy-probes method, is a formal treatment based on Green’s functions that allows the electrochemical potentials in two regions of an open quantum system to be fixed. In this article, the equations of motion of the hairy-probes formalism are rewritten to show that, under certain conditions, they can assume the same algebraic structure as the driven Liouville–von Neumann equation in the form proposed by Morzan et al. (J. Chem. Phys.2017, 146, 044110). In this way, a new formal ground is provided for the latter, identifying the origin of every term. The performances of the different methods are explored using tight-binding time-dependent simulations in three trial structures, designated as ballistic, disordered, and resonant models. In the context of first-principles Hamiltonians, the driven Liouville–von Neumann approach is of special interest, because it does not require the calculation of Green’s functions. Hence, the effects of replacing the reference density based on the Green’s function by one obtained from an applied field are investigated, to gain a deeper understanding of the limitations and the range of applicability of the driven Liouville–von Neumann equation.
Fil: Ramírez, Francisco Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Fil: Dundas, Daniel. The Queens University of Belfast; Irlanda
Fil: Sanchez, Cristian Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; Argentina
Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Fil: Todorov, Tchavdar N.. The Queens University of Belfast; Irlanda
description The so-called driven Liouville–von Neumann equation is a dynamical formulation to simulate a voltage bias across a molecular system and to model a time-dependent current in a grand-canonical framework. This approach introduces a damping term in the equation of motion that drives the charge to a reference, out of equilibrium density. Originally proposed by Horsfield and co-workers, further work on this scheme has led to different coexisting versions of this equation. On the other hand, the multiple-probe scheme devised by Todorov and collaborators, known as the hairy-probes method, is a formal treatment based on Green’s functions that allows the electrochemical potentials in two regions of an open quantum system to be fixed. In this article, the equations of motion of the hairy-probes formalism are rewritten to show that, under certain conditions, they can assume the same algebraic structure as the driven Liouville–von Neumann equation in the form proposed by Morzan et al. (J. Chem. Phys.2017, 146, 044110). In this way, a new formal ground is provided for the latter, identifying the origin of every term. The performances of the different methods are explored using tight-binding time-dependent simulations in three trial structures, designated as ballistic, disordered, and resonant models. In the context of first-principles Hamiltonians, the driven Liouville–von Neumann approach is of special interest, because it does not require the calculation of Green’s functions. Hence, the effects of replacing the reference density based on the Green’s function by one obtained from an applied field are investigated, to gain a deeper understanding of the limitations and the range of applicability of the driven Liouville–von Neumann equation.
publishDate 2019
dc.date.none.fl_str_mv 2019-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/121635
Ramírez, Francisco Fernando; Dundas, Daniel; Sanchez, Cristian Gabriel; Scherlis Perel, Damian Ariel; Todorov, Tchavdar N.; Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions; American Chemical Society; Journal of Physical Chemistry C; 123; 20; 4-2019; 12542-12555
1932-7447
1932-7455
CONICET Digital
CONICET
url http://hdl.handle.net/11336/121635
identifier_str_mv Ramírez, Francisco Fernando; Dundas, Daniel; Sanchez, Cristian Gabriel; Scherlis Perel, Damian Ariel; Todorov, Tchavdar N.; Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions; American Chemical Society; Journal of Physical Chemistry C; 123; 20; 4-2019; 12542-12555
1932-7447
1932-7455
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.8b12319
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.8b12319
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1905.04393
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781237653405696
score 12.982451