Ethylbenzene production over platinum catalysts supported on modified KY zeolites

Autores
Fonseca, Juliana Da Silva Lima; Júnior, Arnaldo Da Costa Faro; Grau, Javier Mario; Rangel, Maria do Carmo
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Platinum catalysts supported on zeolite KY (Si/Al = 12.7), modified with magnesium, calcium or barium, were evaluated in n-octane reforming to produce ethylbenzene. The catalysts were characterized by nitrogen adsorption, 27Al and 29Si solid state nuclear magnetic resonance, Fourier transform infrared spectroscopy using carbon monoxide or pyridine, metal dispersion measurements and programmed temperature oxidation. No significant structural change was noted for the solids due to the dopants except
for barium, which decreased the specific surface area, due to the partial blockage of the zeolite channels by the large size ions. However, a decrease was noted for all samples due to platinum, which partially blocked the zeolite channels. Barium also decreased the crystallinity while platinum caused this effect only for calcium and barium-containing samples, due to the structure partial collapse. Metallic platinum species in several electronic states were detected in the cages of zeolite, barium-containing catalyst showing the most electron-enriched platinum atoms. The amount of Lewis and Brønsted acid sites increased due to magnesium and calcium but barium increased only the amount of Lewis acid sites, as compared to potassium-containing solid. The catalysts with magnesium and barium showed the same platinum dispersion, which was higher than the one containing calcium. All catalysts were active in n-octane reforming at 723K and selective to ethylbenzene, but the conversion dropped with time reaction due to the decrease of specific surface area and to coke deposition. The calcium-containing sample produced the hardest coke, which led to the highest drop in conversion. The n-octane conversion was supposed to occur by a monofunctional mechanism but the bifunctional mechanism also seemed to occur due to the residual acidity of the catalysts. The calcium and barium-containing catalysts were the most selective to
ethylbenzene, due to electron-enriched platinum species related to promoters, but the low ethylbenzene selectivity for the magnesium-containing catalyst was compensated by its high conversion, resulting in similar yields for all catalysts.
Fil: Fonseca, Juliana Da Silva Lima. Universidade Federal da Bahia; Brasil
Fil: Júnior, Arnaldo Da Costa Faro. Universidade Federal do Rio de Janeiro; Brasil
Fil: Grau, Javier Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Rangel, Maria do Carmo. Universidade Federal da Bahia; Brasil
Materia
N-Octane Reforming
Y Zeolite
Ethylbenzene
Coke
Barium
Calcium
Magnesium
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/54027

id CONICETDig_902ba4099beff32334ee1f38fa21ffc7
oai_identifier_str oai:ri.conicet.gov.ar:11336/54027
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Ethylbenzene production over platinum catalysts supported on modified KY zeolitesFonseca, Juliana Da Silva LimaJúnior, Arnaldo Da Costa FaroGrau, Javier MarioRangel, Maria do CarmoN-Octane ReformingY ZeoliteEthylbenzeneCokeBariumCalciumMagnesiumhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Platinum catalysts supported on zeolite KY (Si/Al = 12.7), modified with magnesium, calcium or barium, were evaluated in n-octane reforming to produce ethylbenzene. The catalysts were characterized by nitrogen adsorption, 27Al and 29Si solid state nuclear magnetic resonance, Fourier transform infrared spectroscopy using carbon monoxide or pyridine, metal dispersion measurements and programmed temperature oxidation. No significant structural change was noted for the solids due to the dopants except<br />for barium, which decreased the specific surface area, due to the partial blockage of the zeolite channels by the large size ions. However, a decrease was noted for all samples due to platinum, which partially blocked the zeolite channels. Barium also decreased the crystallinity while platinum caused this effect only for calcium and barium-containing samples, due to the structure partial collapse. Metallic platinum species in several electronic states were detected in the cages of zeolite, barium-containing catalyst showing the most electron-enriched platinum atoms. The amount of Lewis and Brønsted acid sites increased due to magnesium and calcium but barium increased only the amount of Lewis acid sites, as compared to potassium-containing solid. The catalysts with magnesium and barium showed the same platinum dispersion, which was higher than the one containing calcium. All catalysts were active in n-octane reforming at 723K and selective to ethylbenzene, but the conversion dropped with time reaction due to the decrease of specific surface area and to coke deposition. The calcium-containing sample produced the hardest coke, which led to the highest drop in conversion. The n-octane conversion was supposed to occur by a monofunctional mechanism but the bifunctional mechanism also seemed to occur due to the residual acidity of the catalysts. The calcium and barium-containing catalysts were the most selective to<br />ethylbenzene, due to electron-enriched platinum species related to promoters, but the low ethylbenzene selectivity for the magnesium-containing catalyst was compensated by its high conversion, resulting in similar yields for all catalysts.Fil: Fonseca, Juliana Da Silva Lima. Universidade Federal da Bahia; BrasilFil: Júnior, Arnaldo Da Costa Faro. Universidade Federal do Rio de Janeiro; BrasilFil: Grau, Javier Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Rangel, Maria do Carmo. Universidade Federal da Bahia; BrasilElsevier Science2010-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/54027Fonseca, Juliana Da Silva Lima; Júnior, Arnaldo Da Costa Faro; Grau, Javier Mario; Rangel, Maria do Carmo; Ethylbenzene production over platinum catalysts supported on modified KY zeolites; Elsevier Science; Applied Catalysis A: General; 386; 9-2010; 201-2100926-860XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.apcata.2010.07.056info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:29Zoai:ri.conicet.gov.ar:11336/54027instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:29.966CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Ethylbenzene production over platinum catalysts supported on modified KY zeolites
title Ethylbenzene production over platinum catalysts supported on modified KY zeolites
spellingShingle Ethylbenzene production over platinum catalysts supported on modified KY zeolites
Fonseca, Juliana Da Silva Lima
N-Octane Reforming
Y Zeolite
Ethylbenzene
Coke
Barium
Calcium
Magnesium
title_short Ethylbenzene production over platinum catalysts supported on modified KY zeolites
title_full Ethylbenzene production over platinum catalysts supported on modified KY zeolites
title_fullStr Ethylbenzene production over platinum catalysts supported on modified KY zeolites
title_full_unstemmed Ethylbenzene production over platinum catalysts supported on modified KY zeolites
title_sort Ethylbenzene production over platinum catalysts supported on modified KY zeolites
dc.creator.none.fl_str_mv Fonseca, Juliana Da Silva Lima
Júnior, Arnaldo Da Costa Faro
Grau, Javier Mario
Rangel, Maria do Carmo
author Fonseca, Juliana Da Silva Lima
author_facet Fonseca, Juliana Da Silva Lima
Júnior, Arnaldo Da Costa Faro
Grau, Javier Mario
Rangel, Maria do Carmo
author_role author
author2 Júnior, Arnaldo Da Costa Faro
Grau, Javier Mario
Rangel, Maria do Carmo
author2_role author
author
author
dc.subject.none.fl_str_mv N-Octane Reforming
Y Zeolite
Ethylbenzene
Coke
Barium
Calcium
Magnesium
topic N-Octane Reforming
Y Zeolite
Ethylbenzene
Coke
Barium
Calcium
Magnesium
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Platinum catalysts supported on zeolite KY (Si/Al = 12.7), modified with magnesium, calcium or barium, were evaluated in n-octane reforming to produce ethylbenzene. The catalysts were characterized by nitrogen adsorption, 27Al and 29Si solid state nuclear magnetic resonance, Fourier transform infrared spectroscopy using carbon monoxide or pyridine, metal dispersion measurements and programmed temperature oxidation. No significant structural change was noted for the solids due to the dopants except<br />for barium, which decreased the specific surface area, due to the partial blockage of the zeolite channels by the large size ions. However, a decrease was noted for all samples due to platinum, which partially blocked the zeolite channels. Barium also decreased the crystallinity while platinum caused this effect only for calcium and barium-containing samples, due to the structure partial collapse. Metallic platinum species in several electronic states were detected in the cages of zeolite, barium-containing catalyst showing the most electron-enriched platinum atoms. The amount of Lewis and Brønsted acid sites increased due to magnesium and calcium but barium increased only the amount of Lewis acid sites, as compared to potassium-containing solid. The catalysts with magnesium and barium showed the same platinum dispersion, which was higher than the one containing calcium. All catalysts were active in n-octane reforming at 723K and selective to ethylbenzene, but the conversion dropped with time reaction due to the decrease of specific surface area and to coke deposition. The calcium-containing sample produced the hardest coke, which led to the highest drop in conversion. The n-octane conversion was supposed to occur by a monofunctional mechanism but the bifunctional mechanism also seemed to occur due to the residual acidity of the catalysts. The calcium and barium-containing catalysts were the most selective to<br />ethylbenzene, due to electron-enriched platinum species related to promoters, but the low ethylbenzene selectivity for the magnesium-containing catalyst was compensated by its high conversion, resulting in similar yields for all catalysts.
Fil: Fonseca, Juliana Da Silva Lima. Universidade Federal da Bahia; Brasil
Fil: Júnior, Arnaldo Da Costa Faro. Universidade Federal do Rio de Janeiro; Brasil
Fil: Grau, Javier Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Rangel, Maria do Carmo. Universidade Federal da Bahia; Brasil
description Platinum catalysts supported on zeolite KY (Si/Al = 12.7), modified with magnesium, calcium or barium, were evaluated in n-octane reforming to produce ethylbenzene. The catalysts were characterized by nitrogen adsorption, 27Al and 29Si solid state nuclear magnetic resonance, Fourier transform infrared spectroscopy using carbon monoxide or pyridine, metal dispersion measurements and programmed temperature oxidation. No significant structural change was noted for the solids due to the dopants except<br />for barium, which decreased the specific surface area, due to the partial blockage of the zeolite channels by the large size ions. However, a decrease was noted for all samples due to platinum, which partially blocked the zeolite channels. Barium also decreased the crystallinity while platinum caused this effect only for calcium and barium-containing samples, due to the structure partial collapse. Metallic platinum species in several electronic states were detected in the cages of zeolite, barium-containing catalyst showing the most electron-enriched platinum atoms. The amount of Lewis and Brønsted acid sites increased due to magnesium and calcium but barium increased only the amount of Lewis acid sites, as compared to potassium-containing solid. The catalysts with magnesium and barium showed the same platinum dispersion, which was higher than the one containing calcium. All catalysts were active in n-octane reforming at 723K and selective to ethylbenzene, but the conversion dropped with time reaction due to the decrease of specific surface area and to coke deposition. The calcium-containing sample produced the hardest coke, which led to the highest drop in conversion. The n-octane conversion was supposed to occur by a monofunctional mechanism but the bifunctional mechanism also seemed to occur due to the residual acidity of the catalysts. The calcium and barium-containing catalysts were the most selective to<br />ethylbenzene, due to electron-enriched platinum species related to promoters, but the low ethylbenzene selectivity for the magnesium-containing catalyst was compensated by its high conversion, resulting in similar yields for all catalysts.
publishDate 2010
dc.date.none.fl_str_mv 2010-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/54027
Fonseca, Juliana Da Silva Lima; Júnior, Arnaldo Da Costa Faro; Grau, Javier Mario; Rangel, Maria do Carmo; Ethylbenzene production over platinum catalysts supported on modified KY zeolites; Elsevier Science; Applied Catalysis A: General; 386; 9-2010; 201-210
0926-860X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/54027
identifier_str_mv Fonseca, Juliana Da Silva Lima; Júnior, Arnaldo Da Costa Faro; Grau, Javier Mario; Rangel, Maria do Carmo; Ethylbenzene production over platinum catalysts supported on modified KY zeolites; Elsevier Science; Applied Catalysis A: General; 386; 9-2010; 201-210
0926-860X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apcata.2010.07.056
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844612991117426688
score 13.070432