A simple and fast representation space for classifying complex time series
- Autores
- Zunino, Luciano José; Olivares Zamora, Felipe Esteban; Bariviera, Aurelio F.; Rosso, Osvaldo Aníbal
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the context of time series analysis considerable effort has been directed towards the implementation of efficient discriminating statistical quantifiers. Very recently, a simple and fast representation space has been introduced, namely the number of turning points versus the Abbe value. It is able to separate time series from stationary and non-stationary processes with long-range dependences. In this work we show that this bidimensional approach is useful for distinguishing complex time series: different sets of financial and physiological data are efficiently discriminated. Additionally, a multiscale generalization that takes into account the multiple time scales often involved in complex systems has been also proposed. This multiscale analysis is essential to reach a higher discriminative power between physiological time series in health and disease.
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina
Fil: Olivares Zamora, Felipe Esteban. Pontificia Universidad Católica de Valparaíso; Chile
Fil: Bariviera, Aurelio F.. Universitat Rovira I Virgili; España
Fil: Rosso, Osvaldo Aníbal. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidade Federal de Alagoas; Brasil. Instituto Tecnológico de Buenos Aires; Argentina. Universidad de los Andes; Chile - Materia
-
Time Series Analysis
Abbe Value
Turning Points
Financial Data
Electroencephalogram Data
Heart Rate Variability - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/40735
Ver los metadatos del registro completo
id |
CONICETDig_8fe7a84ab758dfe13a5a4072d63f4842 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/40735 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A simple and fast representation space for classifying complex time seriesZunino, Luciano JoséOlivares Zamora, Felipe EstebanBariviera, Aurelio F.Rosso, Osvaldo AníbalTime Series AnalysisAbbe ValueTurning PointsFinancial DataElectroencephalogram DataHeart Rate Variabilityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In the context of time series analysis considerable effort has been directed towards the implementation of efficient discriminating statistical quantifiers. Very recently, a simple and fast representation space has been introduced, namely the number of turning points versus the Abbe value. It is able to separate time series from stationary and non-stationary processes with long-range dependences. In this work we show that this bidimensional approach is useful for distinguishing complex time series: different sets of financial and physiological data are efficiently discriminated. Additionally, a multiscale generalization that takes into account the multiple time scales often involved in complex systems has been also proposed. This multiscale analysis is essential to reach a higher discriminative power between physiological time series in health and disease.Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; ArgentinaFil: Olivares Zamora, Felipe Esteban. Pontificia Universidad Católica de Valparaíso; ChileFil: Bariviera, Aurelio F.. Universitat Rovira I Virgili; EspañaFil: Rosso, Osvaldo Aníbal. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidade Federal de Alagoas; Brasil. Instituto Tecnológico de Buenos Aires; Argentina. Universidad de los Andes; ChileElsevier Science2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/40735Zunino, Luciano José; Olivares Zamora, Felipe Esteban; Bariviera, Aurelio F.; Rosso, Osvaldo Aníbal; A simple and fast representation space for classifying complex time series; Elsevier Science; Physics Letters A; 381; 11; 1-2017; 1021-10280375-9601CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physleta.2017.01.047info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0375960116316681info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:48:06Zoai:ri.conicet.gov.ar:11336/40735instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:48:06.261CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A simple and fast representation space for classifying complex time series |
title |
A simple and fast representation space for classifying complex time series |
spellingShingle |
A simple and fast representation space for classifying complex time series Zunino, Luciano José Time Series Analysis Abbe Value Turning Points Financial Data Electroencephalogram Data Heart Rate Variability |
title_short |
A simple and fast representation space for classifying complex time series |
title_full |
A simple and fast representation space for classifying complex time series |
title_fullStr |
A simple and fast representation space for classifying complex time series |
title_full_unstemmed |
A simple and fast representation space for classifying complex time series |
title_sort |
A simple and fast representation space for classifying complex time series |
dc.creator.none.fl_str_mv |
Zunino, Luciano José Olivares Zamora, Felipe Esteban Bariviera, Aurelio F. Rosso, Osvaldo Aníbal |
author |
Zunino, Luciano José |
author_facet |
Zunino, Luciano José Olivares Zamora, Felipe Esteban Bariviera, Aurelio F. Rosso, Osvaldo Aníbal |
author_role |
author |
author2 |
Olivares Zamora, Felipe Esteban Bariviera, Aurelio F. Rosso, Osvaldo Aníbal |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Time Series Analysis Abbe Value Turning Points Financial Data Electroencephalogram Data Heart Rate Variability |
topic |
Time Series Analysis Abbe Value Turning Points Financial Data Electroencephalogram Data Heart Rate Variability |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the context of time series analysis considerable effort has been directed towards the implementation of efficient discriminating statistical quantifiers. Very recently, a simple and fast representation space has been introduced, namely the number of turning points versus the Abbe value. It is able to separate time series from stationary and non-stationary processes with long-range dependences. In this work we show that this bidimensional approach is useful for distinguishing complex time series: different sets of financial and physiological data are efficiently discriminated. Additionally, a multiscale generalization that takes into account the multiple time scales often involved in complex systems has been also proposed. This multiscale analysis is essential to reach a higher discriminative power between physiological time series in health and disease. Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina Fil: Olivares Zamora, Felipe Esteban. Pontificia Universidad Católica de Valparaíso; Chile Fil: Bariviera, Aurelio F.. Universitat Rovira I Virgili; España Fil: Rosso, Osvaldo Aníbal. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidade Federal de Alagoas; Brasil. Instituto Tecnológico de Buenos Aires; Argentina. Universidad de los Andes; Chile |
description |
In the context of time series analysis considerable effort has been directed towards the implementation of efficient discriminating statistical quantifiers. Very recently, a simple and fast representation space has been introduced, namely the number of turning points versus the Abbe value. It is able to separate time series from stationary and non-stationary processes with long-range dependences. In this work we show that this bidimensional approach is useful for distinguishing complex time series: different sets of financial and physiological data are efficiently discriminated. Additionally, a multiscale generalization that takes into account the multiple time scales often involved in complex systems has been also proposed. This multiscale analysis is essential to reach a higher discriminative power between physiological time series in health and disease. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/40735 Zunino, Luciano José; Olivares Zamora, Felipe Esteban; Bariviera, Aurelio F.; Rosso, Osvaldo Aníbal; A simple and fast representation space for classifying complex time series; Elsevier Science; Physics Letters A; 381; 11; 1-2017; 1021-1028 0375-9601 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/40735 |
identifier_str_mv |
Zunino, Luciano José; Olivares Zamora, Felipe Esteban; Bariviera, Aurelio F.; Rosso, Osvaldo Aníbal; A simple and fast representation space for classifying complex time series; Elsevier Science; Physics Letters A; 381; 11; 1-2017; 1021-1028 0375-9601 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physleta.2017.01.047 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0375960116316681 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613495330439168 |
score |
13.070432 |