Changes in the chikungunya virus E1 glycoprotein domain II and hinge influence E2 conformation, infectivity, and virus-receptor interactions

Autores
Thannickal, Sara A.; Battini, Leandro; Spector, Sophie N.; Noval, María Gabriela; Alvarez, Diego Ezequiel; Stapleford, Kenneth A.
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In a previous study to understand how the chikungunya virus (CHIKV) E1 glycoprotein β-strand c functions, we identified several attenuating variants at E1 residue V80 and the emergence of second-site mutations in the fusion loop (E1-M88L) and hinge region (E1-N20Y) with the V80 variants in vivo. The emergence of these mutations led us to question how changes in E1 may contribute to CHIKV infection at the molecular level. Here, we use molecular dynamics to understand how changes in the E1 glycoprotein may influence the CHIKV glycoprotein E1-E2 complex. We found that E1 domain II variants lead to E2 conformational changes, allowing us to hypothesize that emerging variants E1-M88L and E1-N20Y could also change E2 conformation and function. We characterized CHIKV E1-M88L and E1-N20Y in vitro and in vivo to understand how these regions of the E1 glycoprotein contribute to host-specific infection. We found that CHIKV E1-N20Y enhanced infectivity in mosquito cells, while the CHIKV E1-M88L variant enhanced infectivity in both BHK-21 and C6/36 cells and led to changes in viral cholesterol-dependence. Moreover, we found that E1-M88L and E1-N20Y changed E2 conformation, heparin binding, and interactions with the receptor Mxra8. Interestingly, the CHIKV E1-M88L variant increased replication in Mxra8-deficient mice compared to WT CHIKV, yet was attenuated in mouse fibroblasts, suggesting that residue E1-M88 may function in a cell-type-dependent entry. Taken together, these studies show that key residues in the CHIKV E1 domain II and hinge region function through changes in E1-E2 dynamics to facilitate cell- and host-dependent entry.IMPORTANCEArboviruses are significant global public health threats, and their continued emergence around the world highlights the need to understand how these viruses replicate at the molecular level. The alphavirus glycoproteins are critical for virus entry in mosquitoes and mammals, yet how these proteins function is not completely understood. Therefore, it is critical to dissect how distinct glycoprotein domains function in vitro and in vivo to address these gaps in our knowledge. Here, we show that changes in the CHIKV E1 domain II and hinge alter E2 conformations leading to changes in virus-receptor and -glycosaminoglycan interactions and cell-specific infection. These results highlight that adaptive changes in E1 can have a major effect on virus attachment and entry, furthering our knowledge of how alphaviruses infect mammals and insects.
Fil: Thannickal, Sara A.. University Grossman; Estados Unidos
Fil: Battini, Leandro. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Spector, Sophie N.. University Grossman; Estados Unidos
Fil: Noval, María Gabriela. University Grossman; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Alvarez, Diego Ezequiel. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Stapleford, Kenneth A.. University Grossman; Estados Unidos
Materia
alphavirus
dynamics
glycoprotein
infectivity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/265384

id CONICETDig_8fca18a05712e375c84511922fd59794
oai_identifier_str oai:ri.conicet.gov.ar:11336/265384
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Changes in the chikungunya virus E1 glycoprotein domain II and hinge influence E2 conformation, infectivity, and virus-receptor interactionsThannickal, Sara A.Battini, LeandroSpector, Sophie N.Noval, María GabrielaAlvarez, Diego EzequielStapleford, Kenneth A.alphavirusdynamicsglycoproteininfectivityhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1In a previous study to understand how the chikungunya virus (CHIKV) E1 glycoprotein β-strand c functions, we identified several attenuating variants at E1 residue V80 and the emergence of second-site mutations in the fusion loop (E1-M88L) and hinge region (E1-N20Y) with the V80 variants in vivo. The emergence of these mutations led us to question how changes in E1 may contribute to CHIKV infection at the molecular level. Here, we use molecular dynamics to understand how changes in the E1 glycoprotein may influence the CHIKV glycoprotein E1-E2 complex. We found that E1 domain II variants lead to E2 conformational changes, allowing us to hypothesize that emerging variants E1-M88L and E1-N20Y could also change E2 conformation and function. We characterized CHIKV E1-M88L and E1-N20Y in vitro and in vivo to understand how these regions of the E1 glycoprotein contribute to host-specific infection. We found that CHIKV E1-N20Y enhanced infectivity in mosquito cells, while the CHIKV E1-M88L variant enhanced infectivity in both BHK-21 and C6/36 cells and led to changes in viral cholesterol-dependence. Moreover, we found that E1-M88L and E1-N20Y changed E2 conformation, heparin binding, and interactions with the receptor Mxra8. Interestingly, the CHIKV E1-M88L variant increased replication in Mxra8-deficient mice compared to WT CHIKV, yet was attenuated in mouse fibroblasts, suggesting that residue E1-M88 may function in a cell-type-dependent entry. Taken together, these studies show that key residues in the CHIKV E1 domain II and hinge region function through changes in E1-E2 dynamics to facilitate cell- and host-dependent entry.IMPORTANCEArboviruses are significant global public health threats, and their continued emergence around the world highlights the need to understand how these viruses replicate at the molecular level. The alphavirus glycoproteins are critical for virus entry in mosquitoes and mammals, yet how these proteins function is not completely understood. Therefore, it is critical to dissect how distinct glycoprotein domains function in vitro and in vivo to address these gaps in our knowledge. Here, we show that changes in the CHIKV E1 domain II and hinge alter E2 conformations leading to changes in virus-receptor and -glycosaminoglycan interactions and cell-specific infection. These results highlight that adaptive changes in E1 can have a major effect on virus attachment and entry, furthering our knowledge of how alphaviruses infect mammals and insects.Fil: Thannickal, Sara A.. University Grossman; Estados UnidosFil: Battini, Leandro. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Spector, Sophie N.. University Grossman; Estados UnidosFil: Noval, María Gabriela. University Grossman; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alvarez, Diego Ezequiel. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Stapleford, Kenneth A.. University Grossman; Estados UnidosAmerican Society for Microbiology2024-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265384Thannickal, Sara A.; Battini, Leandro; Spector, Sophie N.; Noval, María Gabriela; Alvarez, Diego Ezequiel; et al.; Changes in the chikungunya virus E1 glycoprotein domain II and hinge influence E2 conformation, infectivity, and virus-receptor interactions; American Society for Microbiology; Journal of Virology; 98; 7; 7-2024; 1-250022-538XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.asm.org/doi/10.1128/jvi.00679-24info:eu-repo/semantics/altIdentifier/doi/10.1128/jvi.00679-24info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:00:53Zoai:ri.conicet.gov.ar:11336/265384instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:00:53.969CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Changes in the chikungunya virus E1 glycoprotein domain II and hinge influence E2 conformation, infectivity, and virus-receptor interactions
title Changes in the chikungunya virus E1 glycoprotein domain II and hinge influence E2 conformation, infectivity, and virus-receptor interactions
spellingShingle Changes in the chikungunya virus E1 glycoprotein domain II and hinge influence E2 conformation, infectivity, and virus-receptor interactions
Thannickal, Sara A.
alphavirus
dynamics
glycoprotein
infectivity
title_short Changes in the chikungunya virus E1 glycoprotein domain II and hinge influence E2 conformation, infectivity, and virus-receptor interactions
title_full Changes in the chikungunya virus E1 glycoprotein domain II and hinge influence E2 conformation, infectivity, and virus-receptor interactions
title_fullStr Changes in the chikungunya virus E1 glycoprotein domain II and hinge influence E2 conformation, infectivity, and virus-receptor interactions
title_full_unstemmed Changes in the chikungunya virus E1 glycoprotein domain II and hinge influence E2 conformation, infectivity, and virus-receptor interactions
title_sort Changes in the chikungunya virus E1 glycoprotein domain II and hinge influence E2 conformation, infectivity, and virus-receptor interactions
dc.creator.none.fl_str_mv Thannickal, Sara A.
Battini, Leandro
Spector, Sophie N.
Noval, María Gabriela
Alvarez, Diego Ezequiel
Stapleford, Kenneth A.
author Thannickal, Sara A.
author_facet Thannickal, Sara A.
Battini, Leandro
Spector, Sophie N.
Noval, María Gabriela
Alvarez, Diego Ezequiel
Stapleford, Kenneth A.
author_role author
author2 Battini, Leandro
Spector, Sophie N.
Noval, María Gabriela
Alvarez, Diego Ezequiel
Stapleford, Kenneth A.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv alphavirus
dynamics
glycoprotein
infectivity
topic alphavirus
dynamics
glycoprotein
infectivity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In a previous study to understand how the chikungunya virus (CHIKV) E1 glycoprotein β-strand c functions, we identified several attenuating variants at E1 residue V80 and the emergence of second-site mutations in the fusion loop (E1-M88L) and hinge region (E1-N20Y) with the V80 variants in vivo. The emergence of these mutations led us to question how changes in E1 may contribute to CHIKV infection at the molecular level. Here, we use molecular dynamics to understand how changes in the E1 glycoprotein may influence the CHIKV glycoprotein E1-E2 complex. We found that E1 domain II variants lead to E2 conformational changes, allowing us to hypothesize that emerging variants E1-M88L and E1-N20Y could also change E2 conformation and function. We characterized CHIKV E1-M88L and E1-N20Y in vitro and in vivo to understand how these regions of the E1 glycoprotein contribute to host-specific infection. We found that CHIKV E1-N20Y enhanced infectivity in mosquito cells, while the CHIKV E1-M88L variant enhanced infectivity in both BHK-21 and C6/36 cells and led to changes in viral cholesterol-dependence. Moreover, we found that E1-M88L and E1-N20Y changed E2 conformation, heparin binding, and interactions with the receptor Mxra8. Interestingly, the CHIKV E1-M88L variant increased replication in Mxra8-deficient mice compared to WT CHIKV, yet was attenuated in mouse fibroblasts, suggesting that residue E1-M88 may function in a cell-type-dependent entry. Taken together, these studies show that key residues in the CHIKV E1 domain II and hinge region function through changes in E1-E2 dynamics to facilitate cell- and host-dependent entry.IMPORTANCEArboviruses are significant global public health threats, and their continued emergence around the world highlights the need to understand how these viruses replicate at the molecular level. The alphavirus glycoproteins are critical for virus entry in mosquitoes and mammals, yet how these proteins function is not completely understood. Therefore, it is critical to dissect how distinct glycoprotein domains function in vitro and in vivo to address these gaps in our knowledge. Here, we show that changes in the CHIKV E1 domain II and hinge alter E2 conformations leading to changes in virus-receptor and -glycosaminoglycan interactions and cell-specific infection. These results highlight that adaptive changes in E1 can have a major effect on virus attachment and entry, furthering our knowledge of how alphaviruses infect mammals and insects.
Fil: Thannickal, Sara A.. University Grossman; Estados Unidos
Fil: Battini, Leandro. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Spector, Sophie N.. University Grossman; Estados Unidos
Fil: Noval, María Gabriela. University Grossman; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Alvarez, Diego Ezequiel. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Stapleford, Kenneth A.. University Grossman; Estados Unidos
description In a previous study to understand how the chikungunya virus (CHIKV) E1 glycoprotein β-strand c functions, we identified several attenuating variants at E1 residue V80 and the emergence of second-site mutations in the fusion loop (E1-M88L) and hinge region (E1-N20Y) with the V80 variants in vivo. The emergence of these mutations led us to question how changes in E1 may contribute to CHIKV infection at the molecular level. Here, we use molecular dynamics to understand how changes in the E1 glycoprotein may influence the CHIKV glycoprotein E1-E2 complex. We found that E1 domain II variants lead to E2 conformational changes, allowing us to hypothesize that emerging variants E1-M88L and E1-N20Y could also change E2 conformation and function. We characterized CHIKV E1-M88L and E1-N20Y in vitro and in vivo to understand how these regions of the E1 glycoprotein contribute to host-specific infection. We found that CHIKV E1-N20Y enhanced infectivity in mosquito cells, while the CHIKV E1-M88L variant enhanced infectivity in both BHK-21 and C6/36 cells and led to changes in viral cholesterol-dependence. Moreover, we found that E1-M88L and E1-N20Y changed E2 conformation, heparin binding, and interactions with the receptor Mxra8. Interestingly, the CHIKV E1-M88L variant increased replication in Mxra8-deficient mice compared to WT CHIKV, yet was attenuated in mouse fibroblasts, suggesting that residue E1-M88 may function in a cell-type-dependent entry. Taken together, these studies show that key residues in the CHIKV E1 domain II and hinge region function through changes in E1-E2 dynamics to facilitate cell- and host-dependent entry.IMPORTANCEArboviruses are significant global public health threats, and their continued emergence around the world highlights the need to understand how these viruses replicate at the molecular level. The alphavirus glycoproteins are critical for virus entry in mosquitoes and mammals, yet how these proteins function is not completely understood. Therefore, it is critical to dissect how distinct glycoprotein domains function in vitro and in vivo to address these gaps in our knowledge. Here, we show that changes in the CHIKV E1 domain II and hinge alter E2 conformations leading to changes in virus-receptor and -glycosaminoglycan interactions and cell-specific infection. These results highlight that adaptive changes in E1 can have a major effect on virus attachment and entry, furthering our knowledge of how alphaviruses infect mammals and insects.
publishDate 2024
dc.date.none.fl_str_mv 2024-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/265384
Thannickal, Sara A.; Battini, Leandro; Spector, Sophie N.; Noval, María Gabriela; Alvarez, Diego Ezequiel; et al.; Changes in the chikungunya virus E1 glycoprotein domain II and hinge influence E2 conformation, infectivity, and virus-receptor interactions; American Society for Microbiology; Journal of Virology; 98; 7; 7-2024; 1-25
0022-538X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/265384
identifier_str_mv Thannickal, Sara A.; Battini, Leandro; Spector, Sophie N.; Noval, María Gabriela; Alvarez, Diego Ezequiel; et al.; Changes in the chikungunya virus E1 glycoprotein domain II and hinge influence E2 conformation, infectivity, and virus-receptor interactions; American Society for Microbiology; Journal of Virology; 98; 7; 7-2024; 1-25
0022-538X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.asm.org/doi/10.1128/jvi.00679-24
info:eu-repo/semantics/altIdentifier/doi/10.1128/jvi.00679-24
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Society for Microbiology
publisher.none.fl_str_mv American Society for Microbiology
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613796322082816
score 13.070432