Dynamics of the active site architecture in plant-type ferredoxin-NADP + reductases catalytic complexes

Autores
Sanchez Azqueta, Ana; Catalano Dupuy, Daniela Luján; Lopez Rivero, Arleth Susana; Tondo, Maria Laura; Orellano, Elena Graciela; Ceccarelli, Eduardo Augusto; Medina, Milagros
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Kinetic isotope effects in reactions involving hydride transfer and their temperature dependence are powerful tools to explore dynamics of enzyme catalytic sites. In plant-type ferredoxin-NADP+ reductases the FAD cofactor exchanges a hydride with the NADP(H) coenzyme. Rates for these processes are considerably faster for the plastidic members (FNR) of the family than for those belonging to the bacterial class (FPR). Hydride transfer (HT) and deuteride transfer (DT) rates for the NADP+ coenzyme reduction of four plant-type FNRs (two representatives of the plastidic type FNRs and the other two from the bacterial class), and their temperature dependences are here examined applying a full tunnelling model with coupled environmental fluctuations. Parameters for the two plastidic FNRs confirm a tunnelling reaction with active dynamics contributions, but isotope effects on Arrhenius factors indicate a larger contribution for donor–acceptor distance (DAD) dynamics in the Pisum sativum FNR reaction than in the Anabaena FNR reaction. On the other hand, parameters for bacterial FPRs are consistent with passive environmental reorganisation movements dominating the HT coordinate and no contribution of DAD sampling or gating fluctuations. This indicates that active sites of FPRs are more organised and rigid than those of FNRs. These differences must be due to adaptation of the active sites and catalytic mechanisms to fulfil their particular metabolic roles, establishing a compromise between protein flexibility and functional optimisation. Analysis of site-directed mutants in plastidic enzymes additionally indicates the requirement of a minimal optimal architecture in the catalytic complex to provide a favourable gating contribution.
Fil: Sanchez Azqueta, Ana. Universidad de Zaragoza; España. Consejo Superior de Investigaciones Científicas; España
Fil: Catalano Dupuy, Daniela Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: Lopez Rivero, Arleth Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: Tondo, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: Orellano, Elena Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: Ceccarelli, Eduardo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: Medina, Milagros. Universidad de Zaragoza; España. Consejo Superior de Investigaciones Científicas; España
Materia
Ferredoxin-Nadp+ Reductase
Flavoenzyme
Kinetic Isotopic Effect
Hydride Transfer
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/29406

id CONICETDig_8f8498ba63b27c8d1ae954ee1f1017a2
oai_identifier_str oai:ri.conicet.gov.ar:11336/29406
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dynamics of the active site architecture in plant-type ferredoxin-NADP + reductases catalytic complexesSanchez Azqueta, AnaCatalano Dupuy, Daniela LujánLopez Rivero, Arleth SusanaTondo, Maria LauraOrellano, Elena GracielaCeccarelli, Eduardo AugustoMedina, MilagrosFerredoxin-Nadp+ ReductaseFlavoenzymeKinetic Isotopic EffectHydride Transferhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Kinetic isotope effects in reactions involving hydride transfer and their temperature dependence are powerful tools to explore dynamics of enzyme catalytic sites. In plant-type ferredoxin-NADP+ reductases the FAD cofactor exchanges a hydride with the NADP(H) coenzyme. Rates for these processes are considerably faster for the plastidic members (FNR) of the family than for those belonging to the bacterial class (FPR). Hydride transfer (HT) and deuteride transfer (DT) rates for the NADP+ coenzyme reduction of four plant-type FNRs (two representatives of the plastidic type FNRs and the other two from the bacterial class), and their temperature dependences are here examined applying a full tunnelling model with coupled environmental fluctuations. Parameters for the two plastidic FNRs confirm a tunnelling reaction with active dynamics contributions, but isotope effects on Arrhenius factors indicate a larger contribution for donor–acceptor distance (DAD) dynamics in the Pisum sativum FNR reaction than in the Anabaena FNR reaction. On the other hand, parameters for bacterial FPRs are consistent with passive environmental reorganisation movements dominating the HT coordinate and no contribution of DAD sampling or gating fluctuations. This indicates that active sites of FPRs are more organised and rigid than those of FNRs. These differences must be due to adaptation of the active sites and catalytic mechanisms to fulfil their particular metabolic roles, establishing a compromise between protein flexibility and functional optimisation. Analysis of site-directed mutants in plastidic enzymes additionally indicates the requirement of a minimal optimal architecture in the catalytic complex to provide a favourable gating contribution.Fil: Sanchez Azqueta, Ana. Universidad de Zaragoza; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Catalano Dupuy, Daniela Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Lopez Rivero, Arleth Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Tondo, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Orellano, Elena Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Ceccarelli, Eduardo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Medina, Milagros. Universidad de Zaragoza; España. Consejo Superior de Investigaciones Científicas; EspañaElsevier Science2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29406Sanchez Azqueta, Ana; Catalano Dupuy, Daniela Luján; Lopez Rivero, Arleth Susana; Tondo, Maria Laura; Orellano, Elena Graciela; et al.; Dynamics of the active site architecture in plant-type ferredoxin-NADP + reductases catalytic complexes; Elsevier Science; Biochimica Et Biophysica Acta-bioenergetics; 1837; 10; 6-2014; 1730-17380005-2728CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.bbabio.2014.06.003info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0005272814005118info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:44Zoai:ri.conicet.gov.ar:11336/29406instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:45.017CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dynamics of the active site architecture in plant-type ferredoxin-NADP + reductases catalytic complexes
title Dynamics of the active site architecture in plant-type ferredoxin-NADP + reductases catalytic complexes
spellingShingle Dynamics of the active site architecture in plant-type ferredoxin-NADP + reductases catalytic complexes
Sanchez Azqueta, Ana
Ferredoxin-Nadp+ Reductase
Flavoenzyme
Kinetic Isotopic Effect
Hydride Transfer
title_short Dynamics of the active site architecture in plant-type ferredoxin-NADP + reductases catalytic complexes
title_full Dynamics of the active site architecture in plant-type ferredoxin-NADP + reductases catalytic complexes
title_fullStr Dynamics of the active site architecture in plant-type ferredoxin-NADP + reductases catalytic complexes
title_full_unstemmed Dynamics of the active site architecture in plant-type ferredoxin-NADP + reductases catalytic complexes
title_sort Dynamics of the active site architecture in plant-type ferredoxin-NADP + reductases catalytic complexes
dc.creator.none.fl_str_mv Sanchez Azqueta, Ana
Catalano Dupuy, Daniela Luján
Lopez Rivero, Arleth Susana
Tondo, Maria Laura
Orellano, Elena Graciela
Ceccarelli, Eduardo Augusto
Medina, Milagros
author Sanchez Azqueta, Ana
author_facet Sanchez Azqueta, Ana
Catalano Dupuy, Daniela Luján
Lopez Rivero, Arleth Susana
Tondo, Maria Laura
Orellano, Elena Graciela
Ceccarelli, Eduardo Augusto
Medina, Milagros
author_role author
author2 Catalano Dupuy, Daniela Luján
Lopez Rivero, Arleth Susana
Tondo, Maria Laura
Orellano, Elena Graciela
Ceccarelli, Eduardo Augusto
Medina, Milagros
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Ferredoxin-Nadp+ Reductase
Flavoenzyme
Kinetic Isotopic Effect
Hydride Transfer
topic Ferredoxin-Nadp+ Reductase
Flavoenzyme
Kinetic Isotopic Effect
Hydride Transfer
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Kinetic isotope effects in reactions involving hydride transfer and their temperature dependence are powerful tools to explore dynamics of enzyme catalytic sites. In plant-type ferredoxin-NADP+ reductases the FAD cofactor exchanges a hydride with the NADP(H) coenzyme. Rates for these processes are considerably faster for the plastidic members (FNR) of the family than for those belonging to the bacterial class (FPR). Hydride transfer (HT) and deuteride transfer (DT) rates for the NADP+ coenzyme reduction of four plant-type FNRs (two representatives of the plastidic type FNRs and the other two from the bacterial class), and their temperature dependences are here examined applying a full tunnelling model with coupled environmental fluctuations. Parameters for the two plastidic FNRs confirm a tunnelling reaction with active dynamics contributions, but isotope effects on Arrhenius factors indicate a larger contribution for donor–acceptor distance (DAD) dynamics in the Pisum sativum FNR reaction than in the Anabaena FNR reaction. On the other hand, parameters for bacterial FPRs are consistent with passive environmental reorganisation movements dominating the HT coordinate and no contribution of DAD sampling or gating fluctuations. This indicates that active sites of FPRs are more organised and rigid than those of FNRs. These differences must be due to adaptation of the active sites and catalytic mechanisms to fulfil their particular metabolic roles, establishing a compromise between protein flexibility and functional optimisation. Analysis of site-directed mutants in plastidic enzymes additionally indicates the requirement of a minimal optimal architecture in the catalytic complex to provide a favourable gating contribution.
Fil: Sanchez Azqueta, Ana. Universidad de Zaragoza; España. Consejo Superior de Investigaciones Científicas; España
Fil: Catalano Dupuy, Daniela Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: Lopez Rivero, Arleth Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: Tondo, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: Orellano, Elena Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: Ceccarelli, Eduardo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: Medina, Milagros. Universidad de Zaragoza; España. Consejo Superior de Investigaciones Científicas; España
description Kinetic isotope effects in reactions involving hydride transfer and their temperature dependence are powerful tools to explore dynamics of enzyme catalytic sites. In plant-type ferredoxin-NADP+ reductases the FAD cofactor exchanges a hydride with the NADP(H) coenzyme. Rates for these processes are considerably faster for the plastidic members (FNR) of the family than for those belonging to the bacterial class (FPR). Hydride transfer (HT) and deuteride transfer (DT) rates for the NADP+ coenzyme reduction of four plant-type FNRs (two representatives of the plastidic type FNRs and the other two from the bacterial class), and their temperature dependences are here examined applying a full tunnelling model with coupled environmental fluctuations. Parameters for the two plastidic FNRs confirm a tunnelling reaction with active dynamics contributions, but isotope effects on Arrhenius factors indicate a larger contribution for donor–acceptor distance (DAD) dynamics in the Pisum sativum FNR reaction than in the Anabaena FNR reaction. On the other hand, parameters for bacterial FPRs are consistent with passive environmental reorganisation movements dominating the HT coordinate and no contribution of DAD sampling or gating fluctuations. This indicates that active sites of FPRs are more organised and rigid than those of FNRs. These differences must be due to adaptation of the active sites and catalytic mechanisms to fulfil their particular metabolic roles, establishing a compromise between protein flexibility and functional optimisation. Analysis of site-directed mutants in plastidic enzymes additionally indicates the requirement of a minimal optimal architecture in the catalytic complex to provide a favourable gating contribution.
publishDate 2014
dc.date.none.fl_str_mv 2014-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/29406
Sanchez Azqueta, Ana; Catalano Dupuy, Daniela Luján; Lopez Rivero, Arleth Susana; Tondo, Maria Laura; Orellano, Elena Graciela; et al.; Dynamics of the active site architecture in plant-type ferredoxin-NADP + reductases catalytic complexes; Elsevier Science; Biochimica Et Biophysica Acta-bioenergetics; 1837; 10; 6-2014; 1730-1738
0005-2728
CONICET Digital
CONICET
url http://hdl.handle.net/11336/29406
identifier_str_mv Sanchez Azqueta, Ana; Catalano Dupuy, Daniela Luján; Lopez Rivero, Arleth Susana; Tondo, Maria Laura; Orellano, Elena Graciela; et al.; Dynamics of the active site architecture in plant-type ferredoxin-NADP + reductases catalytic complexes; Elsevier Science; Biochimica Et Biophysica Acta-bioenergetics; 1837; 10; 6-2014; 1730-1738
0005-2728
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bbabio.2014.06.003
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0005272814005118
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614304572112896
score 13.070432