Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production
- Autores
- Peris, David; Moriarty, Ryan V.; Alexander, William G.; Baker, EmilyClare; Sylvester, Kayla; Sardi, Maria; Langdon, Quinn K.; Libkind Frati, Diego; Wang, Qi-Ming; Bai, Feng-Yan; Leducq, Jean Baptiste; Charron, Guillaume; Landry, Christian R.; Sampaio, José Paulo; Gonçalves, Paula; Hyma, Katie E.; Fay, Justin C.; Sato, Trey K.; Hittinger, Chris Todd
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker's yeast Saccharomyces cerevisiae. Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In other industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research. Results: To investigate the efficacy of this approach for traits relevant to lignocellulosic biofuel production, we generated synthetic hybrids by crossing engineered xylose-fermenting strains of S. cerevisiae with wild strains from various Saccharomyces species. These interspecies hybrids retained important parental traits, such as xylose consumption and stress tolerance, while displaying intermediate kinetic parameters and, in some cases, heterosis (hybrid vigor). Next, we exposed them to adaptive evolution in ammonia fiber expansion-pretreated corn stover hydrolysate and recovered strains with improved fermentative traits. Genome sequencing showed that the genomes of these evolved synthetic hybrids underwent rearrangements, duplications, and deletions. To determine whether the genus Saccharomyces contains additional untapped potential, we screened a genetically diverse collection of more than 500 wild, non-engineered Saccharomyces isolates and uncovered a wide range of capabilities for traits relevant to cellulosic biofuel production. Notably, Saccharomyces mikatae strains have high innate tolerance to hydrolysate toxins, while some Saccharomyces species have a robust native capacity to consume xylose. Conclusions: This research demonstrates that hybridization is a viable method to combine industrially relevant traits from diverse yeast species and that members of the genus Saccharomyces beyond S. cerevisiae may offer advantageous genes and traits of interest to the lignocellulosic biofuel industry.
Fil: Peris, David. University of Wisconsin; Estados Unidos
Fil: Moriarty, Ryan V.. University of Wisconsin; Estados Unidos
Fil: Alexander, William G.. University of Wisconsin; Estados Unidos
Fil: Baker, EmilyClare. University of Wisconsin; Estados Unidos
Fil: Sylvester, Kayla. University of Wisconsin; Estados Unidos
Fil: Sardi, Maria. University of Wisconsin; Estados Unidos
Fil: Langdon, Quinn K.. University of Wisconsin; Estados Unidos
Fil: Libkind Frati, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales.; Argentina
Fil: Wang, Qi-Ming. University of Wisconsin; Estados Unidos. Institute Of Microbiology Chinese Academy Of Sciences; China
Fil: Bai, Feng-Yan. Institute Of Microbiology Chinese Academy Of Sciences; China
Fil: Leducq, Jean Baptiste. University of Montreal; Canadá. Laval University; Canadá
Fil: Charron, Guillaume. Laval University; Canadá
Fil: Landry, Christian R.. Laval University; Canadá
Fil: Sampaio, José Paulo. New University Of Lisbon; Portugal
Fil: Gonçalves, Paula. New University Of Lisbon; Portugal
Fil: Hyma, Katie E.. Washington University in St. Louis; Estados Unidos
Fil: Fay, Justin C.. Washington University in St. Louis; Estados Unidos
Fil: Sato, Trey K.. University of Wisconsin; Estados Unidos
Fil: Hittinger, Chris Todd. University of Wisconsin; Estados Unidos - Materia
-
AFEX-PRETREATED CORN STOVER HYDROLYSATE (ACSH)
AMMONIA FIBER EXPANSION (AFEX)
BIODIVERSITY
BIOETHANOL
HYBRIDIZATION
HYDROLYSATE TOXINS
SACCHAROMYCES
XYLOSE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/58489
Ver los metadatos del registro completo
id |
CONICETDig_8e15e11787fd529094f63ebe6a664d13 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/58489 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel productionPeris, DavidMoriarty, Ryan V.Alexander, William G.Baker, EmilyClareSylvester, KaylaSardi, MariaLangdon, Quinn K.Libkind Frati, DiegoWang, Qi-MingBai, Feng-YanLeducq, Jean BaptisteCharron, GuillaumeLandry, Christian R.Sampaio, José PauloGonçalves, PaulaHyma, Katie E.Fay, Justin C.Sato, Trey K.Hittinger, Chris ToddAFEX-PRETREATED CORN STOVER HYDROLYSATE (ACSH)AMMONIA FIBER EXPANSION (AFEX)BIODIVERSITYBIOETHANOLHYBRIDIZATIONHYDROLYSATE TOXINSSACCHAROMYCESXYLOSEhttps://purl.org/becyt/ford/2.9https://purl.org/becyt/ford/2Background: Lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker's yeast Saccharomyces cerevisiae. Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In other industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research. Results: To investigate the efficacy of this approach for traits relevant to lignocellulosic biofuel production, we generated synthetic hybrids by crossing engineered xylose-fermenting strains of S. cerevisiae with wild strains from various Saccharomyces species. These interspecies hybrids retained important parental traits, such as xylose consumption and stress tolerance, while displaying intermediate kinetic parameters and, in some cases, heterosis (hybrid vigor). Next, we exposed them to adaptive evolution in ammonia fiber expansion-pretreated corn stover hydrolysate and recovered strains with improved fermentative traits. Genome sequencing showed that the genomes of these evolved synthetic hybrids underwent rearrangements, duplications, and deletions. To determine whether the genus Saccharomyces contains additional untapped potential, we screened a genetically diverse collection of more than 500 wild, non-engineered Saccharomyces isolates and uncovered a wide range of capabilities for traits relevant to cellulosic biofuel production. Notably, Saccharomyces mikatae strains have high innate tolerance to hydrolysate toxins, while some Saccharomyces species have a robust native capacity to consume xylose. Conclusions: This research demonstrates that hybridization is a viable method to combine industrially relevant traits from diverse yeast species and that members of the genus Saccharomyces beyond S. cerevisiae may offer advantageous genes and traits of interest to the lignocellulosic biofuel industry.Fil: Peris, David. University of Wisconsin; Estados UnidosFil: Moriarty, Ryan V.. University of Wisconsin; Estados UnidosFil: Alexander, William G.. University of Wisconsin; Estados UnidosFil: Baker, EmilyClare. University of Wisconsin; Estados UnidosFil: Sylvester, Kayla. University of Wisconsin; Estados UnidosFil: Sardi, Maria. University of Wisconsin; Estados UnidosFil: Langdon, Quinn K.. University of Wisconsin; Estados UnidosFil: Libkind Frati, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales.; ArgentinaFil: Wang, Qi-Ming. University of Wisconsin; Estados Unidos. Institute Of Microbiology Chinese Academy Of Sciences; ChinaFil: Bai, Feng-Yan. Institute Of Microbiology Chinese Academy Of Sciences; ChinaFil: Leducq, Jean Baptiste. University of Montreal; Canadá. Laval University; CanadáFil: Charron, Guillaume. Laval University; CanadáFil: Landry, Christian R.. Laval University; CanadáFil: Sampaio, José Paulo. New University Of Lisbon; PortugalFil: Gonçalves, Paula. New University Of Lisbon; PortugalFil: Hyma, Katie E.. Washington University in St. Louis; Estados UnidosFil: Fay, Justin C.. Washington University in St. Louis; Estados UnidosFil: Sato, Trey K.. University of Wisconsin; Estados UnidosFil: Hittinger, Chris Todd. University of Wisconsin; Estados UnidosBioMed Central2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58489Peris, David; Moriarty, Ryan V.; Alexander, William G.; Baker, EmilyClare; Sylvester, Kayla; et al.; Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production; BioMed Central; Biotechnology For Biofuels; 10; 1; 3-2017; 1-191754-6834CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1186/s13068-017-0763-7info:eu-repo/semantics/altIdentifier/url/https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-017-0763-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:06Zoai:ri.conicet.gov.ar:11336/58489instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:06.403CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production |
title |
Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production |
spellingShingle |
Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production Peris, David AFEX-PRETREATED CORN STOVER HYDROLYSATE (ACSH) AMMONIA FIBER EXPANSION (AFEX) BIODIVERSITY BIOETHANOL HYBRIDIZATION HYDROLYSATE TOXINS SACCHAROMYCES XYLOSE |
title_short |
Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production |
title_full |
Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production |
title_fullStr |
Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production |
title_full_unstemmed |
Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production |
title_sort |
Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production |
dc.creator.none.fl_str_mv |
Peris, David Moriarty, Ryan V. Alexander, William G. Baker, EmilyClare Sylvester, Kayla Sardi, Maria Langdon, Quinn K. Libkind Frati, Diego Wang, Qi-Ming Bai, Feng-Yan Leducq, Jean Baptiste Charron, Guillaume Landry, Christian R. Sampaio, José Paulo Gonçalves, Paula Hyma, Katie E. Fay, Justin C. Sato, Trey K. Hittinger, Chris Todd |
author |
Peris, David |
author_facet |
Peris, David Moriarty, Ryan V. Alexander, William G. Baker, EmilyClare Sylvester, Kayla Sardi, Maria Langdon, Quinn K. Libkind Frati, Diego Wang, Qi-Ming Bai, Feng-Yan Leducq, Jean Baptiste Charron, Guillaume Landry, Christian R. Sampaio, José Paulo Gonçalves, Paula Hyma, Katie E. Fay, Justin C. Sato, Trey K. Hittinger, Chris Todd |
author_role |
author |
author2 |
Moriarty, Ryan V. Alexander, William G. Baker, EmilyClare Sylvester, Kayla Sardi, Maria Langdon, Quinn K. Libkind Frati, Diego Wang, Qi-Ming Bai, Feng-Yan Leducq, Jean Baptiste Charron, Guillaume Landry, Christian R. Sampaio, José Paulo Gonçalves, Paula Hyma, Katie E. Fay, Justin C. Sato, Trey K. Hittinger, Chris Todd |
author2_role |
author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
AFEX-PRETREATED CORN STOVER HYDROLYSATE (ACSH) AMMONIA FIBER EXPANSION (AFEX) BIODIVERSITY BIOETHANOL HYBRIDIZATION HYDROLYSATE TOXINS SACCHAROMYCES XYLOSE |
topic |
AFEX-PRETREATED CORN STOVER HYDROLYSATE (ACSH) AMMONIA FIBER EXPANSION (AFEX) BIODIVERSITY BIOETHANOL HYBRIDIZATION HYDROLYSATE TOXINS SACCHAROMYCES XYLOSE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.9 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Background: Lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker's yeast Saccharomyces cerevisiae. Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In other industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research. Results: To investigate the efficacy of this approach for traits relevant to lignocellulosic biofuel production, we generated synthetic hybrids by crossing engineered xylose-fermenting strains of S. cerevisiae with wild strains from various Saccharomyces species. These interspecies hybrids retained important parental traits, such as xylose consumption and stress tolerance, while displaying intermediate kinetic parameters and, in some cases, heterosis (hybrid vigor). Next, we exposed them to adaptive evolution in ammonia fiber expansion-pretreated corn stover hydrolysate and recovered strains with improved fermentative traits. Genome sequencing showed that the genomes of these evolved synthetic hybrids underwent rearrangements, duplications, and deletions. To determine whether the genus Saccharomyces contains additional untapped potential, we screened a genetically diverse collection of more than 500 wild, non-engineered Saccharomyces isolates and uncovered a wide range of capabilities for traits relevant to cellulosic biofuel production. Notably, Saccharomyces mikatae strains have high innate tolerance to hydrolysate toxins, while some Saccharomyces species have a robust native capacity to consume xylose. Conclusions: This research demonstrates that hybridization is a viable method to combine industrially relevant traits from diverse yeast species and that members of the genus Saccharomyces beyond S. cerevisiae may offer advantageous genes and traits of interest to the lignocellulosic biofuel industry. Fil: Peris, David. University of Wisconsin; Estados Unidos Fil: Moriarty, Ryan V.. University of Wisconsin; Estados Unidos Fil: Alexander, William G.. University of Wisconsin; Estados Unidos Fil: Baker, EmilyClare. University of Wisconsin; Estados Unidos Fil: Sylvester, Kayla. University of Wisconsin; Estados Unidos Fil: Sardi, Maria. University of Wisconsin; Estados Unidos Fil: Langdon, Quinn K.. University of Wisconsin; Estados Unidos Fil: Libkind Frati, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales.; Argentina Fil: Wang, Qi-Ming. University of Wisconsin; Estados Unidos. Institute Of Microbiology Chinese Academy Of Sciences; China Fil: Bai, Feng-Yan. Institute Of Microbiology Chinese Academy Of Sciences; China Fil: Leducq, Jean Baptiste. University of Montreal; Canadá. Laval University; Canadá Fil: Charron, Guillaume. Laval University; Canadá Fil: Landry, Christian R.. Laval University; Canadá Fil: Sampaio, José Paulo. New University Of Lisbon; Portugal Fil: Gonçalves, Paula. New University Of Lisbon; Portugal Fil: Hyma, Katie E.. Washington University in St. Louis; Estados Unidos Fil: Fay, Justin C.. Washington University in St. Louis; Estados Unidos Fil: Sato, Trey K.. University of Wisconsin; Estados Unidos Fil: Hittinger, Chris Todd. University of Wisconsin; Estados Unidos |
description |
Background: Lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker's yeast Saccharomyces cerevisiae. Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In other industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research. Results: To investigate the efficacy of this approach for traits relevant to lignocellulosic biofuel production, we generated synthetic hybrids by crossing engineered xylose-fermenting strains of S. cerevisiae with wild strains from various Saccharomyces species. These interspecies hybrids retained important parental traits, such as xylose consumption and stress tolerance, while displaying intermediate kinetic parameters and, in some cases, heterosis (hybrid vigor). Next, we exposed them to adaptive evolution in ammonia fiber expansion-pretreated corn stover hydrolysate and recovered strains with improved fermentative traits. Genome sequencing showed that the genomes of these evolved synthetic hybrids underwent rearrangements, duplications, and deletions. To determine whether the genus Saccharomyces contains additional untapped potential, we screened a genetically diverse collection of more than 500 wild, non-engineered Saccharomyces isolates and uncovered a wide range of capabilities for traits relevant to cellulosic biofuel production. Notably, Saccharomyces mikatae strains have high innate tolerance to hydrolysate toxins, while some Saccharomyces species have a robust native capacity to consume xylose. Conclusions: This research demonstrates that hybridization is a viable method to combine industrially relevant traits from diverse yeast species and that members of the genus Saccharomyces beyond S. cerevisiae may offer advantageous genes and traits of interest to the lignocellulosic biofuel industry. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/58489 Peris, David; Moriarty, Ryan V.; Alexander, William G.; Baker, EmilyClare; Sylvester, Kayla; et al.; Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production; BioMed Central; Biotechnology For Biofuels; 10; 1; 3-2017; 1-19 1754-6834 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/58489 |
identifier_str_mv |
Peris, David; Moriarty, Ryan V.; Alexander, William G.; Baker, EmilyClare; Sylvester, Kayla; et al.; Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production; BioMed Central; Biotechnology For Biofuels; 10; 1; 3-2017; 1-19 1754-6834 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1186/s13068-017-0763-7 info:eu-repo/semantics/altIdentifier/url/https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-017-0763-7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
BioMed Central |
publisher.none.fl_str_mv |
BioMed Central |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614453548548096 |
score |
13.070432 |