Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production

Autores
Peris, David; Moriarty, Ryan V.; Alexander, William G.; Baker, EmilyClare; Sylvester, Kayla; Sardi, Maria; Langdon, Quinn K.; Libkind Frati, Diego; Wang, Qi-Ming; Bai, Feng-Yan; Leducq, Jean Baptiste; Charron, Guillaume; Landry, Christian R.; Sampaio, José Paulo; Gonçalves, Paula; Hyma, Katie E.; Fay, Justin C.; Sato, Trey K.; Hittinger, Chris Todd
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: Lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker's yeast Saccharomyces cerevisiae. Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In other industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research. Results: To investigate the efficacy of this approach for traits relevant to lignocellulosic biofuel production, we generated synthetic hybrids by crossing engineered xylose-fermenting strains of S. cerevisiae with wild strains from various Saccharomyces species. These interspecies hybrids retained important parental traits, such as xylose consumption and stress tolerance, while displaying intermediate kinetic parameters and, in some cases, heterosis (hybrid vigor). Next, we exposed them to adaptive evolution in ammonia fiber expansion-pretreated corn stover hydrolysate and recovered strains with improved fermentative traits. Genome sequencing showed that the genomes of these evolved synthetic hybrids underwent rearrangements, duplications, and deletions. To determine whether the genus Saccharomyces contains additional untapped potential, we screened a genetically diverse collection of more than 500 wild, non-engineered Saccharomyces isolates and uncovered a wide range of capabilities for traits relevant to cellulosic biofuel production. Notably, Saccharomyces mikatae strains have high innate tolerance to hydrolysate toxins, while some Saccharomyces species have a robust native capacity to consume xylose. Conclusions: This research demonstrates that hybridization is a viable method to combine industrially relevant traits from diverse yeast species and that members of the genus Saccharomyces beyond S. cerevisiae may offer advantageous genes and traits of interest to the lignocellulosic biofuel industry.
Fil: Peris, David. University of Wisconsin; Estados Unidos
Fil: Moriarty, Ryan V.. University of Wisconsin; Estados Unidos
Fil: Alexander, William G.. University of Wisconsin; Estados Unidos
Fil: Baker, EmilyClare. University of Wisconsin; Estados Unidos
Fil: Sylvester, Kayla. University of Wisconsin; Estados Unidos
Fil: Sardi, Maria. University of Wisconsin; Estados Unidos
Fil: Langdon, Quinn K.. University of Wisconsin; Estados Unidos
Fil: Libkind Frati, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales.; Argentina
Fil: Wang, Qi-Ming. University of Wisconsin; Estados Unidos. Institute Of Microbiology Chinese Academy Of Sciences; China
Fil: Bai, Feng-Yan. Institute Of Microbiology Chinese Academy Of Sciences; China
Fil: Leducq, Jean Baptiste. University of Montreal; Canadá. Laval University; Canadá
Fil: Charron, Guillaume. Laval University; Canadá
Fil: Landry, Christian R.. Laval University; Canadá
Fil: Sampaio, José Paulo. New University Of Lisbon; Portugal
Fil: Gonçalves, Paula. New University Of Lisbon; Portugal
Fil: Hyma, Katie E.. Washington University in St. Louis; Estados Unidos
Fil: Fay, Justin C.. Washington University in St. Louis; Estados Unidos
Fil: Sato, Trey K.. University of Wisconsin; Estados Unidos
Fil: Hittinger, Chris Todd. University of Wisconsin; Estados Unidos
Materia
AFEX-PRETREATED CORN STOVER HYDROLYSATE (ACSH)
AMMONIA FIBER EXPANSION (AFEX)
BIODIVERSITY
BIOETHANOL
HYBRIDIZATION
HYDROLYSATE TOXINS
SACCHAROMYCES
XYLOSE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/58489

id CONICETDig_8e15e11787fd529094f63ebe6a664d13
oai_identifier_str oai:ri.conicet.gov.ar:11336/58489
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel productionPeris, DavidMoriarty, Ryan V.Alexander, William G.Baker, EmilyClareSylvester, KaylaSardi, MariaLangdon, Quinn K.Libkind Frati, DiegoWang, Qi-MingBai, Feng-YanLeducq, Jean BaptisteCharron, GuillaumeLandry, Christian R.Sampaio, José PauloGonçalves, PaulaHyma, Katie E.Fay, Justin C.Sato, Trey K.Hittinger, Chris ToddAFEX-PRETREATED CORN STOVER HYDROLYSATE (ACSH)AMMONIA FIBER EXPANSION (AFEX)BIODIVERSITYBIOETHANOLHYBRIDIZATIONHYDROLYSATE TOXINSSACCHAROMYCESXYLOSEhttps://purl.org/becyt/ford/2.9https://purl.org/becyt/ford/2Background: Lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker's yeast Saccharomyces cerevisiae. Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In other industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research. Results: To investigate the efficacy of this approach for traits relevant to lignocellulosic biofuel production, we generated synthetic hybrids by crossing engineered xylose-fermenting strains of S. cerevisiae with wild strains from various Saccharomyces species. These interspecies hybrids retained important parental traits, such as xylose consumption and stress tolerance, while displaying intermediate kinetic parameters and, in some cases, heterosis (hybrid vigor). Next, we exposed them to adaptive evolution in ammonia fiber expansion-pretreated corn stover hydrolysate and recovered strains with improved fermentative traits. Genome sequencing showed that the genomes of these evolved synthetic hybrids underwent rearrangements, duplications, and deletions. To determine whether the genus Saccharomyces contains additional untapped potential, we screened a genetically diverse collection of more than 500 wild, non-engineered Saccharomyces isolates and uncovered a wide range of capabilities for traits relevant to cellulosic biofuel production. Notably, Saccharomyces mikatae strains have high innate tolerance to hydrolysate toxins, while some Saccharomyces species have a robust native capacity to consume xylose. Conclusions: This research demonstrates that hybridization is a viable method to combine industrially relevant traits from diverse yeast species and that members of the genus Saccharomyces beyond S. cerevisiae may offer advantageous genes and traits of interest to the lignocellulosic biofuel industry.Fil: Peris, David. University of Wisconsin; Estados UnidosFil: Moriarty, Ryan V.. University of Wisconsin; Estados UnidosFil: Alexander, William G.. University of Wisconsin; Estados UnidosFil: Baker, EmilyClare. University of Wisconsin; Estados UnidosFil: Sylvester, Kayla. University of Wisconsin; Estados UnidosFil: Sardi, Maria. University of Wisconsin; Estados UnidosFil: Langdon, Quinn K.. University of Wisconsin; Estados UnidosFil: Libkind Frati, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales.; ArgentinaFil: Wang, Qi-Ming. University of Wisconsin; Estados Unidos. Institute Of Microbiology Chinese Academy Of Sciences; ChinaFil: Bai, Feng-Yan. Institute Of Microbiology Chinese Academy Of Sciences; ChinaFil: Leducq, Jean Baptiste. University of Montreal; Canadá. Laval University; CanadáFil: Charron, Guillaume. Laval University; CanadáFil: Landry, Christian R.. Laval University; CanadáFil: Sampaio, José Paulo. New University Of Lisbon; PortugalFil: Gonçalves, Paula. New University Of Lisbon; PortugalFil: Hyma, Katie E.. Washington University in St. Louis; Estados UnidosFil: Fay, Justin C.. Washington University in St. Louis; Estados UnidosFil: Sato, Trey K.. University of Wisconsin; Estados UnidosFil: Hittinger, Chris Todd. University of Wisconsin; Estados UnidosBioMed Central2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58489Peris, David; Moriarty, Ryan V.; Alexander, William G.; Baker, EmilyClare; Sylvester, Kayla; et al.; Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production; BioMed Central; Biotechnology For Biofuels; 10; 1; 3-2017; 1-191754-6834CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1186/s13068-017-0763-7info:eu-repo/semantics/altIdentifier/url/https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-017-0763-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:06Zoai:ri.conicet.gov.ar:11336/58489instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:06.403CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production
title Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production
spellingShingle Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production
Peris, David
AFEX-PRETREATED CORN STOVER HYDROLYSATE (ACSH)
AMMONIA FIBER EXPANSION (AFEX)
BIODIVERSITY
BIOETHANOL
HYBRIDIZATION
HYDROLYSATE TOXINS
SACCHAROMYCES
XYLOSE
title_short Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production
title_full Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production
title_fullStr Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production
title_full_unstemmed Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production
title_sort Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production
dc.creator.none.fl_str_mv Peris, David
Moriarty, Ryan V.
Alexander, William G.
Baker, EmilyClare
Sylvester, Kayla
Sardi, Maria
Langdon, Quinn K.
Libkind Frati, Diego
Wang, Qi-Ming
Bai, Feng-Yan
Leducq, Jean Baptiste
Charron, Guillaume
Landry, Christian R.
Sampaio, José Paulo
Gonçalves, Paula
Hyma, Katie E.
Fay, Justin C.
Sato, Trey K.
Hittinger, Chris Todd
author Peris, David
author_facet Peris, David
Moriarty, Ryan V.
Alexander, William G.
Baker, EmilyClare
Sylvester, Kayla
Sardi, Maria
Langdon, Quinn K.
Libkind Frati, Diego
Wang, Qi-Ming
Bai, Feng-Yan
Leducq, Jean Baptiste
Charron, Guillaume
Landry, Christian R.
Sampaio, José Paulo
Gonçalves, Paula
Hyma, Katie E.
Fay, Justin C.
Sato, Trey K.
Hittinger, Chris Todd
author_role author
author2 Moriarty, Ryan V.
Alexander, William G.
Baker, EmilyClare
Sylvester, Kayla
Sardi, Maria
Langdon, Quinn K.
Libkind Frati, Diego
Wang, Qi-Ming
Bai, Feng-Yan
Leducq, Jean Baptiste
Charron, Guillaume
Landry, Christian R.
Sampaio, José Paulo
Gonçalves, Paula
Hyma, Katie E.
Fay, Justin C.
Sato, Trey K.
Hittinger, Chris Todd
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv AFEX-PRETREATED CORN STOVER HYDROLYSATE (ACSH)
AMMONIA FIBER EXPANSION (AFEX)
BIODIVERSITY
BIOETHANOL
HYBRIDIZATION
HYDROLYSATE TOXINS
SACCHAROMYCES
XYLOSE
topic AFEX-PRETREATED CORN STOVER HYDROLYSATE (ACSH)
AMMONIA FIBER EXPANSION (AFEX)
BIODIVERSITY
BIOETHANOL
HYBRIDIZATION
HYDROLYSATE TOXINS
SACCHAROMYCES
XYLOSE
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.9
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Background: Lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker's yeast Saccharomyces cerevisiae. Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In other industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research. Results: To investigate the efficacy of this approach for traits relevant to lignocellulosic biofuel production, we generated synthetic hybrids by crossing engineered xylose-fermenting strains of S. cerevisiae with wild strains from various Saccharomyces species. These interspecies hybrids retained important parental traits, such as xylose consumption and stress tolerance, while displaying intermediate kinetic parameters and, in some cases, heterosis (hybrid vigor). Next, we exposed them to adaptive evolution in ammonia fiber expansion-pretreated corn stover hydrolysate and recovered strains with improved fermentative traits. Genome sequencing showed that the genomes of these evolved synthetic hybrids underwent rearrangements, duplications, and deletions. To determine whether the genus Saccharomyces contains additional untapped potential, we screened a genetically diverse collection of more than 500 wild, non-engineered Saccharomyces isolates and uncovered a wide range of capabilities for traits relevant to cellulosic biofuel production. Notably, Saccharomyces mikatae strains have high innate tolerance to hydrolysate toxins, while some Saccharomyces species have a robust native capacity to consume xylose. Conclusions: This research demonstrates that hybridization is a viable method to combine industrially relevant traits from diverse yeast species and that members of the genus Saccharomyces beyond S. cerevisiae may offer advantageous genes and traits of interest to the lignocellulosic biofuel industry.
Fil: Peris, David. University of Wisconsin; Estados Unidos
Fil: Moriarty, Ryan V.. University of Wisconsin; Estados Unidos
Fil: Alexander, William G.. University of Wisconsin; Estados Unidos
Fil: Baker, EmilyClare. University of Wisconsin; Estados Unidos
Fil: Sylvester, Kayla. University of Wisconsin; Estados Unidos
Fil: Sardi, Maria. University of Wisconsin; Estados Unidos
Fil: Langdon, Quinn K.. University of Wisconsin; Estados Unidos
Fil: Libkind Frati, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales.; Argentina
Fil: Wang, Qi-Ming. University of Wisconsin; Estados Unidos. Institute Of Microbiology Chinese Academy Of Sciences; China
Fil: Bai, Feng-Yan. Institute Of Microbiology Chinese Academy Of Sciences; China
Fil: Leducq, Jean Baptiste. University of Montreal; Canadá. Laval University; Canadá
Fil: Charron, Guillaume. Laval University; Canadá
Fil: Landry, Christian R.. Laval University; Canadá
Fil: Sampaio, José Paulo. New University Of Lisbon; Portugal
Fil: Gonçalves, Paula. New University Of Lisbon; Portugal
Fil: Hyma, Katie E.. Washington University in St. Louis; Estados Unidos
Fil: Fay, Justin C.. Washington University in St. Louis; Estados Unidos
Fil: Sato, Trey K.. University of Wisconsin; Estados Unidos
Fil: Hittinger, Chris Todd. University of Wisconsin; Estados Unidos
description Background: Lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker's yeast Saccharomyces cerevisiae. Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In other industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research. Results: To investigate the efficacy of this approach for traits relevant to lignocellulosic biofuel production, we generated synthetic hybrids by crossing engineered xylose-fermenting strains of S. cerevisiae with wild strains from various Saccharomyces species. These interspecies hybrids retained important parental traits, such as xylose consumption and stress tolerance, while displaying intermediate kinetic parameters and, in some cases, heterosis (hybrid vigor). Next, we exposed them to adaptive evolution in ammonia fiber expansion-pretreated corn stover hydrolysate and recovered strains with improved fermentative traits. Genome sequencing showed that the genomes of these evolved synthetic hybrids underwent rearrangements, duplications, and deletions. To determine whether the genus Saccharomyces contains additional untapped potential, we screened a genetically diverse collection of more than 500 wild, non-engineered Saccharomyces isolates and uncovered a wide range of capabilities for traits relevant to cellulosic biofuel production. Notably, Saccharomyces mikatae strains have high innate tolerance to hydrolysate toxins, while some Saccharomyces species have a robust native capacity to consume xylose. Conclusions: This research demonstrates that hybridization is a viable method to combine industrially relevant traits from diverse yeast species and that members of the genus Saccharomyces beyond S. cerevisiae may offer advantageous genes and traits of interest to the lignocellulosic biofuel industry.
publishDate 2017
dc.date.none.fl_str_mv 2017-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/58489
Peris, David; Moriarty, Ryan V.; Alexander, William G.; Baker, EmilyClare; Sylvester, Kayla; et al.; Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production; BioMed Central; Biotechnology For Biofuels; 10; 1; 3-2017; 1-19
1754-6834
CONICET Digital
CONICET
url http://hdl.handle.net/11336/58489
identifier_str_mv Peris, David; Moriarty, Ryan V.; Alexander, William G.; Baker, EmilyClare; Sylvester, Kayla; et al.; Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production; BioMed Central; Biotechnology For Biofuels; 10; 1; 3-2017; 1-19
1754-6834
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1186/s13068-017-0763-7
info:eu-repo/semantics/altIdentifier/url/https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-017-0763-7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv BioMed Central
publisher.none.fl_str_mv BioMed Central
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614453548548096
score 13.070432