A versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data: Unfolded principal component analy...

Autores
Garcia Reiriz, Alejandro Gabriel; Damiani, Patricia Cecilia; Culzoni, Maria Julia; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Second-order instrumental signals showing a non-linear behaviour with respect to analyte concentration can still be adequately processed in order to achieve the important second-order advantage. The combination of unfolded principal component analysis with residual bilinearization, followed by application of a variety of neural network models, allows one to obtain the second-order advantage. While principal component analysis models the training data, residual bilinearization models the contribution of the potential interferents which may be present in the test samples. Neural networks such as multilayer perceptron, radial basis functions and support vector machines, are all able to model the non-linear relationship between analyte concentrations and sample principal component scores. Three different experimental systems have been analyzed, all requiring the second-order advantage: 1) pH-UV absorbance matrices for the determination of two active principles in pharmaceutical preparations, 2) fluorescence excitation-emission matrices for the determination of polycyclic aromatic hydrocarbons, and 3) UV-induced fluorescence excitation-emission matrices for the determination of amoxicillin in the presence of salicylate. In all cases, reasonably accurate predictions can be made with the proposed techniques, which cannot be reached using traditional methods for processing second-order data.
Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Damiani, Patricia Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Culzoni, Maria Julia. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimioterapia; Argentina
Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimioterapia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Materia
Second-order advantage
Residual bilinearization
Multilayer perceptron networks
Radial basis functions
Support vector machines
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/105102

id CONICETDig_3db0347880504bf616054409da66843c
oai_identifier_str oai:ri.conicet.gov.ar:11336/105102
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data: Unfolded principal component analysis/residual bilinearizationGarcia Reiriz, Alejandro GabrielDamiani, Patricia CeciliaCulzoni, Maria JuliaGoicoechea, Hector CasimiroOlivieri, Alejandro CesarSecond-order advantageResidual bilinearizationMultilayer perceptron networksRadial basis functionsSupport vector machineshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Second-order instrumental signals showing a non-linear behaviour with respect to analyte concentration can still be adequately processed in order to achieve the important second-order advantage. The combination of unfolded principal component analysis with residual bilinearization, followed by application of a variety of neural network models, allows one to obtain the second-order advantage. While principal component analysis models the training data, residual bilinearization models the contribution of the potential interferents which may be present in the test samples. Neural networks such as multilayer perceptron, radial basis functions and support vector machines, are all able to model the non-linear relationship between analyte concentrations and sample principal component scores. Three different experimental systems have been analyzed, all requiring the second-order advantage: 1) pH-UV absorbance matrices for the determination of two active principles in pharmaceutical preparations, 2) fluorescence excitation-emission matrices for the determination of polycyclic aromatic hydrocarbons, and 3) UV-induced fluorescence excitation-emission matrices for the determination of amoxicillin in the presence of salicylate. In all cases, reasonably accurate predictions can be made with the proposed techniques, which cannot be reached using traditional methods for processing second-order data.Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Damiani, Patricia Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Culzoni, Maria Julia. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimioterapia; ArgentinaFil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimioterapia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaElsevier Science2008-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/105102Garcia Reiriz, Alejandro Gabriel; Damiani, Patricia Cecilia; Culzoni, Maria Julia; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; A versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data: Unfolded principal component analysis/residual bilinearization; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 92; 1; 5-2008; 61-700169-7439CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2007.12.002info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0169743907002377info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:35Zoai:ri.conicet.gov.ar:11336/105102instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:35.505CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data: Unfolded principal component analysis/residual bilinearization
title A versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data: Unfolded principal component analysis/residual bilinearization
spellingShingle A versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data: Unfolded principal component analysis/residual bilinearization
Garcia Reiriz, Alejandro Gabriel
Second-order advantage
Residual bilinearization
Multilayer perceptron networks
Radial basis functions
Support vector machines
title_short A versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data: Unfolded principal component analysis/residual bilinearization
title_full A versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data: Unfolded principal component analysis/residual bilinearization
title_fullStr A versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data: Unfolded principal component analysis/residual bilinearization
title_full_unstemmed A versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data: Unfolded principal component analysis/residual bilinearization
title_sort A versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data: Unfolded principal component analysis/residual bilinearization
dc.creator.none.fl_str_mv Garcia Reiriz, Alejandro Gabriel
Damiani, Patricia Cecilia
Culzoni, Maria Julia
Goicoechea, Hector Casimiro
Olivieri, Alejandro Cesar
author Garcia Reiriz, Alejandro Gabriel
author_facet Garcia Reiriz, Alejandro Gabriel
Damiani, Patricia Cecilia
Culzoni, Maria Julia
Goicoechea, Hector Casimiro
Olivieri, Alejandro Cesar
author_role author
author2 Damiani, Patricia Cecilia
Culzoni, Maria Julia
Goicoechea, Hector Casimiro
Olivieri, Alejandro Cesar
author2_role author
author
author
author
dc.subject.none.fl_str_mv Second-order advantage
Residual bilinearization
Multilayer perceptron networks
Radial basis functions
Support vector machines
topic Second-order advantage
Residual bilinearization
Multilayer perceptron networks
Radial basis functions
Support vector machines
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Second-order instrumental signals showing a non-linear behaviour with respect to analyte concentration can still be adequately processed in order to achieve the important second-order advantage. The combination of unfolded principal component analysis with residual bilinearization, followed by application of a variety of neural network models, allows one to obtain the second-order advantage. While principal component analysis models the training data, residual bilinearization models the contribution of the potential interferents which may be present in the test samples. Neural networks such as multilayer perceptron, radial basis functions and support vector machines, are all able to model the non-linear relationship between analyte concentrations and sample principal component scores. Three different experimental systems have been analyzed, all requiring the second-order advantage: 1) pH-UV absorbance matrices for the determination of two active principles in pharmaceutical preparations, 2) fluorescence excitation-emission matrices for the determination of polycyclic aromatic hydrocarbons, and 3) UV-induced fluorescence excitation-emission matrices for the determination of amoxicillin in the presence of salicylate. In all cases, reasonably accurate predictions can be made with the proposed techniques, which cannot be reached using traditional methods for processing second-order data.
Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Damiani, Patricia Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Culzoni, Maria Julia. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimioterapia; Argentina
Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimioterapia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
description Second-order instrumental signals showing a non-linear behaviour with respect to analyte concentration can still be adequately processed in order to achieve the important second-order advantage. The combination of unfolded principal component analysis with residual bilinearization, followed by application of a variety of neural network models, allows one to obtain the second-order advantage. While principal component analysis models the training data, residual bilinearization models the contribution of the potential interferents which may be present in the test samples. Neural networks such as multilayer perceptron, radial basis functions and support vector machines, are all able to model the non-linear relationship between analyte concentrations and sample principal component scores. Three different experimental systems have been analyzed, all requiring the second-order advantage: 1) pH-UV absorbance matrices for the determination of two active principles in pharmaceutical preparations, 2) fluorescence excitation-emission matrices for the determination of polycyclic aromatic hydrocarbons, and 3) UV-induced fluorescence excitation-emission matrices for the determination of amoxicillin in the presence of salicylate. In all cases, reasonably accurate predictions can be made with the proposed techniques, which cannot be reached using traditional methods for processing second-order data.
publishDate 2008
dc.date.none.fl_str_mv 2008-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/105102
Garcia Reiriz, Alejandro Gabriel; Damiani, Patricia Cecilia; Culzoni, Maria Julia; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; A versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data: Unfolded principal component analysis/residual bilinearization; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 92; 1; 5-2008; 61-70
0169-7439
CONICET Digital
CONICET
url http://hdl.handle.net/11336/105102
identifier_str_mv Garcia Reiriz, Alejandro Gabriel; Damiani, Patricia Cecilia; Culzoni, Maria Julia; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; A versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data: Unfolded principal component analysis/residual bilinearization; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 92; 1; 5-2008; 61-70
0169-7439
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2007.12.002
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0169743907002377
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268741639864320
score 13.13397