Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks

Autores
Elorza, Maria Eugenia; Moscoso, Nebel Silvana; Blanco, Anibal Manuel
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Mathematical models allow studying complex systems. In particular, optimal facility location models provide a sound framework to assess the performance of first-level of health care networks. In this work, a methodology founded on need/offer/demand quantification through a facility location-based mathematical model is proposed to assess the performance of existing networks of Primary Health Care Centers (PHCC) and assist in its re-design. The proposed re-design problem investigates the re-allocation of existing resources within the given infrastructure (existing PHCCs) to better satisfy the estimated health needs of the target population. This problem has not been widely addressed in the open literature despite its paramount importance in modern societies with fast demographic dynamics and constrained investment capacities. The model seeks to optimally assign the required type of service and the corresponding capacity to each PHCC (offer). The objective function to be maximized is the number of (needed) patients’ visits effectively covered by the network (demand). The following constraints are explicitly considered: i) geographic accessibility from need centers to PHCCs, ii) maximum delivery capacity of each service in each PHCC, and iii) total budget regarding fixed, variable, and relocation costs. The proposed methodology was applied to a medium-size city. Results show that the non-attended necessity can be reduced by introducing capacity modifications in the existing network. Moreover, different solutions are obtained if budgetary restrictions or minimum attention volume constraints are included. This reveals how model-based decision support tools can help health decision-makers assessing primary health care network performance.
Fil: Elorza, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina
Fil: Moscoso, Nebel Silvana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina
Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Materia
HEALTH SERVICES NETWORK RE-DESIGN
HEALTH SYSTEM PERFORMANCE ASSESSMENT
MIXER INTEGER LINEAL PROGRAM
OPTIMAL LOCATION MATHEMATICAL MODEL
PRIMARY HEALTH CARE CENTER
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/201730

id CONICETDig_8da0a839aec3fccc7cc04aa4f6946b67
oai_identifier_str oai:ri.conicet.gov.ar:11336/201730
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networksElorza, Maria EugeniaMoscoso, Nebel SilvanaBlanco, Anibal ManuelHEALTH SERVICES NETWORK RE-DESIGNHEALTH SYSTEM PERFORMANCE ASSESSMENTMIXER INTEGER LINEAL PROGRAMOPTIMAL LOCATION MATHEMATICAL MODELPRIMARY HEALTH CARE CENTERhttps://purl.org/becyt/ford/5.2https://purl.org/becyt/ford/5Mathematical models allow studying complex systems. In particular, optimal facility location models provide a sound framework to assess the performance of first-level of health care networks. In this work, a methodology founded on need/offer/demand quantification through a facility location-based mathematical model is proposed to assess the performance of existing networks of Primary Health Care Centers (PHCC) and assist in its re-design. The proposed re-design problem investigates the re-allocation of existing resources within the given infrastructure (existing PHCCs) to better satisfy the estimated health needs of the target population. This problem has not been widely addressed in the open literature despite its paramount importance in modern societies with fast demographic dynamics and constrained investment capacities. The model seeks to optimally assign the required type of service and the corresponding capacity to each PHCC (offer). The objective function to be maximized is the number of (needed) patients’ visits effectively covered by the network (demand). The following constraints are explicitly considered: i) geographic accessibility from need centers to PHCCs, ii) maximum delivery capacity of each service in each PHCC, and iii) total budget regarding fixed, variable, and relocation costs. The proposed methodology was applied to a medium-size city. Results show that the non-attended necessity can be reduced by introducing capacity modifications in the existing network. Moreover, different solutions are obtained if budgetary restrictions or minimum attention volume constraints are included. This reveals how model-based decision support tools can help health decision-makers assessing primary health care network performance.Fil: Elorza, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; ArgentinaFil: Moscoso, Nebel Silvana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; ArgentinaFil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaElsevier2022-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/201730Elorza, Maria Eugenia; Moscoso, Nebel Silvana; Blanco, Anibal Manuel; Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks; Elsevier; Socio-Economic Planning Sciences; 84; 101454; 11-2022; 1-150038-0121CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.seps.2022.101454info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0038012122002555info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:08Zoai:ri.conicet.gov.ar:11336/201730instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:08.558CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks
title Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks
spellingShingle Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks
Elorza, Maria Eugenia
HEALTH SERVICES NETWORK RE-DESIGN
HEALTH SYSTEM PERFORMANCE ASSESSMENT
MIXER INTEGER LINEAL PROGRAM
OPTIMAL LOCATION MATHEMATICAL MODEL
PRIMARY HEALTH CARE CENTER
title_short Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks
title_full Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks
title_fullStr Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks
title_full_unstemmed Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks
title_sort Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks
dc.creator.none.fl_str_mv Elorza, Maria Eugenia
Moscoso, Nebel Silvana
Blanco, Anibal Manuel
author Elorza, Maria Eugenia
author_facet Elorza, Maria Eugenia
Moscoso, Nebel Silvana
Blanco, Anibal Manuel
author_role author
author2 Moscoso, Nebel Silvana
Blanco, Anibal Manuel
author2_role author
author
dc.subject.none.fl_str_mv HEALTH SERVICES NETWORK RE-DESIGN
HEALTH SYSTEM PERFORMANCE ASSESSMENT
MIXER INTEGER LINEAL PROGRAM
OPTIMAL LOCATION MATHEMATICAL MODEL
PRIMARY HEALTH CARE CENTER
topic HEALTH SERVICES NETWORK RE-DESIGN
HEALTH SYSTEM PERFORMANCE ASSESSMENT
MIXER INTEGER LINEAL PROGRAM
OPTIMAL LOCATION MATHEMATICAL MODEL
PRIMARY HEALTH CARE CENTER
purl_subject.fl_str_mv https://purl.org/becyt/ford/5.2
https://purl.org/becyt/ford/5
dc.description.none.fl_txt_mv Mathematical models allow studying complex systems. In particular, optimal facility location models provide a sound framework to assess the performance of first-level of health care networks. In this work, a methodology founded on need/offer/demand quantification through a facility location-based mathematical model is proposed to assess the performance of existing networks of Primary Health Care Centers (PHCC) and assist in its re-design. The proposed re-design problem investigates the re-allocation of existing resources within the given infrastructure (existing PHCCs) to better satisfy the estimated health needs of the target population. This problem has not been widely addressed in the open literature despite its paramount importance in modern societies with fast demographic dynamics and constrained investment capacities. The model seeks to optimally assign the required type of service and the corresponding capacity to each PHCC (offer). The objective function to be maximized is the number of (needed) patients’ visits effectively covered by the network (demand). The following constraints are explicitly considered: i) geographic accessibility from need centers to PHCCs, ii) maximum delivery capacity of each service in each PHCC, and iii) total budget regarding fixed, variable, and relocation costs. The proposed methodology was applied to a medium-size city. Results show that the non-attended necessity can be reduced by introducing capacity modifications in the existing network. Moreover, different solutions are obtained if budgetary restrictions or minimum attention volume constraints are included. This reveals how model-based decision support tools can help health decision-makers assessing primary health care network performance.
Fil: Elorza, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina
Fil: Moscoso, Nebel Silvana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina
Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
description Mathematical models allow studying complex systems. In particular, optimal facility location models provide a sound framework to assess the performance of first-level of health care networks. In this work, a methodology founded on need/offer/demand quantification through a facility location-based mathematical model is proposed to assess the performance of existing networks of Primary Health Care Centers (PHCC) and assist in its re-design. The proposed re-design problem investigates the re-allocation of existing resources within the given infrastructure (existing PHCCs) to better satisfy the estimated health needs of the target population. This problem has not been widely addressed in the open literature despite its paramount importance in modern societies with fast demographic dynamics and constrained investment capacities. The model seeks to optimally assign the required type of service and the corresponding capacity to each PHCC (offer). The objective function to be maximized is the number of (needed) patients’ visits effectively covered by the network (demand). The following constraints are explicitly considered: i) geographic accessibility from need centers to PHCCs, ii) maximum delivery capacity of each service in each PHCC, and iii) total budget regarding fixed, variable, and relocation costs. The proposed methodology was applied to a medium-size city. Results show that the non-attended necessity can be reduced by introducing capacity modifications in the existing network. Moreover, different solutions are obtained if budgetary restrictions or minimum attention volume constraints are included. This reveals how model-based decision support tools can help health decision-makers assessing primary health care network performance.
publishDate 2022
dc.date.none.fl_str_mv 2022-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/201730
Elorza, Maria Eugenia; Moscoso, Nebel Silvana; Blanco, Anibal Manuel; Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks; Elsevier; Socio-Economic Planning Sciences; 84; 101454; 11-2022; 1-15
0038-0121
CONICET Digital
CONICET
url http://hdl.handle.net/11336/201730
identifier_str_mv Elorza, Maria Eugenia; Moscoso, Nebel Silvana; Blanco, Anibal Manuel; Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks; Elsevier; Socio-Economic Planning Sciences; 84; 101454; 11-2022; 1-15
0038-0121
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.seps.2022.101454
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0038012122002555
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269386477404160
score 13.13397