Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks
- Autores
- Elorza, Maria Eugenia; Moscoso, Nebel Silvana; Blanco, Anibal Manuel
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Mathematical models allow studying complex systems. In particular, optimal facility location models provide a sound framework to assess the performance of first-level of health care networks. In this work, a methodology founded on need/offer/demand quantification through a facility location-based mathematical model is proposed to assess the performance of existing networks of Primary Health Care Centers (PHCC) and assist in its re-design. The proposed re-design problem investigates the re-allocation of existing resources within the given infrastructure (existing PHCCs) to better satisfy the estimated health needs of the target population. This problem has not been widely addressed in the open literature despite its paramount importance in modern societies with fast demographic dynamics and constrained investment capacities. The model seeks to optimally assign the required type of service and the corresponding capacity to each PHCC (offer). The objective function to be maximized is the number of (needed) patients’ visits effectively covered by the network (demand). The following constraints are explicitly considered: i) geographic accessibility from need centers to PHCCs, ii) maximum delivery capacity of each service in each PHCC, and iii) total budget regarding fixed, variable, and relocation costs. The proposed methodology was applied to a medium-size city. Results show that the non-attended necessity can be reduced by introducing capacity modifications in the existing network. Moreover, different solutions are obtained if budgetary restrictions or minimum attention volume constraints are included. This reveals how model-based decision support tools can help health decision-makers assessing primary health care network performance.
Fil: Elorza, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina
Fil: Moscoso, Nebel Silvana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina
Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina - Materia
-
HEALTH SERVICES NETWORK RE-DESIGN
HEALTH SYSTEM PERFORMANCE ASSESSMENT
MIXER INTEGER LINEAL PROGRAM
OPTIMAL LOCATION MATHEMATICAL MODEL
PRIMARY HEALTH CARE CENTER - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/201730
Ver los metadatos del registro completo
id |
CONICETDig_8da0a839aec3fccc7cc04aa4f6946b67 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/201730 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networksElorza, Maria EugeniaMoscoso, Nebel SilvanaBlanco, Anibal ManuelHEALTH SERVICES NETWORK RE-DESIGNHEALTH SYSTEM PERFORMANCE ASSESSMENTMIXER INTEGER LINEAL PROGRAMOPTIMAL LOCATION MATHEMATICAL MODELPRIMARY HEALTH CARE CENTERhttps://purl.org/becyt/ford/5.2https://purl.org/becyt/ford/5Mathematical models allow studying complex systems. In particular, optimal facility location models provide a sound framework to assess the performance of first-level of health care networks. In this work, a methodology founded on need/offer/demand quantification through a facility location-based mathematical model is proposed to assess the performance of existing networks of Primary Health Care Centers (PHCC) and assist in its re-design. The proposed re-design problem investigates the re-allocation of existing resources within the given infrastructure (existing PHCCs) to better satisfy the estimated health needs of the target population. This problem has not been widely addressed in the open literature despite its paramount importance in modern societies with fast demographic dynamics and constrained investment capacities. The model seeks to optimally assign the required type of service and the corresponding capacity to each PHCC (offer). The objective function to be maximized is the number of (needed) patients’ visits effectively covered by the network (demand). The following constraints are explicitly considered: i) geographic accessibility from need centers to PHCCs, ii) maximum delivery capacity of each service in each PHCC, and iii) total budget regarding fixed, variable, and relocation costs. The proposed methodology was applied to a medium-size city. Results show that the non-attended necessity can be reduced by introducing capacity modifications in the existing network. Moreover, different solutions are obtained if budgetary restrictions or minimum attention volume constraints are included. This reveals how model-based decision support tools can help health decision-makers assessing primary health care network performance.Fil: Elorza, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; ArgentinaFil: Moscoso, Nebel Silvana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; ArgentinaFil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaElsevier2022-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/201730Elorza, Maria Eugenia; Moscoso, Nebel Silvana; Blanco, Anibal Manuel; Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks; Elsevier; Socio-Economic Planning Sciences; 84; 101454; 11-2022; 1-150038-0121CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.seps.2022.101454info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0038012122002555info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:08Zoai:ri.conicet.gov.ar:11336/201730instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:08.558CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks |
title |
Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks |
spellingShingle |
Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks Elorza, Maria Eugenia HEALTH SERVICES NETWORK RE-DESIGN HEALTH SYSTEM PERFORMANCE ASSESSMENT MIXER INTEGER LINEAL PROGRAM OPTIMAL LOCATION MATHEMATICAL MODEL PRIMARY HEALTH CARE CENTER |
title_short |
Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks |
title_full |
Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks |
title_fullStr |
Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks |
title_full_unstemmed |
Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks |
title_sort |
Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks |
dc.creator.none.fl_str_mv |
Elorza, Maria Eugenia Moscoso, Nebel Silvana Blanco, Anibal Manuel |
author |
Elorza, Maria Eugenia |
author_facet |
Elorza, Maria Eugenia Moscoso, Nebel Silvana Blanco, Anibal Manuel |
author_role |
author |
author2 |
Moscoso, Nebel Silvana Blanco, Anibal Manuel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
HEALTH SERVICES NETWORK RE-DESIGN HEALTH SYSTEM PERFORMANCE ASSESSMENT MIXER INTEGER LINEAL PROGRAM OPTIMAL LOCATION MATHEMATICAL MODEL PRIMARY HEALTH CARE CENTER |
topic |
HEALTH SERVICES NETWORK RE-DESIGN HEALTH SYSTEM PERFORMANCE ASSESSMENT MIXER INTEGER LINEAL PROGRAM OPTIMAL LOCATION MATHEMATICAL MODEL PRIMARY HEALTH CARE CENTER |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/5.2 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
Mathematical models allow studying complex systems. In particular, optimal facility location models provide a sound framework to assess the performance of first-level of health care networks. In this work, a methodology founded on need/offer/demand quantification through a facility location-based mathematical model is proposed to assess the performance of existing networks of Primary Health Care Centers (PHCC) and assist in its re-design. The proposed re-design problem investigates the re-allocation of existing resources within the given infrastructure (existing PHCCs) to better satisfy the estimated health needs of the target population. This problem has not been widely addressed in the open literature despite its paramount importance in modern societies with fast demographic dynamics and constrained investment capacities. The model seeks to optimally assign the required type of service and the corresponding capacity to each PHCC (offer). The objective function to be maximized is the number of (needed) patients’ visits effectively covered by the network (demand). The following constraints are explicitly considered: i) geographic accessibility from need centers to PHCCs, ii) maximum delivery capacity of each service in each PHCC, and iii) total budget regarding fixed, variable, and relocation costs. The proposed methodology was applied to a medium-size city. Results show that the non-attended necessity can be reduced by introducing capacity modifications in the existing network. Moreover, different solutions are obtained if budgetary restrictions or minimum attention volume constraints are included. This reveals how model-based decision support tools can help health decision-makers assessing primary health care network performance. Fil: Elorza, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina Fil: Moscoso, Nebel Silvana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina |
description |
Mathematical models allow studying complex systems. In particular, optimal facility location models provide a sound framework to assess the performance of first-level of health care networks. In this work, a methodology founded on need/offer/demand quantification through a facility location-based mathematical model is proposed to assess the performance of existing networks of Primary Health Care Centers (PHCC) and assist in its re-design. The proposed re-design problem investigates the re-allocation of existing resources within the given infrastructure (existing PHCCs) to better satisfy the estimated health needs of the target population. This problem has not been widely addressed in the open literature despite its paramount importance in modern societies with fast demographic dynamics and constrained investment capacities. The model seeks to optimally assign the required type of service and the corresponding capacity to each PHCC (offer). The objective function to be maximized is the number of (needed) patients’ visits effectively covered by the network (demand). The following constraints are explicitly considered: i) geographic accessibility from need centers to PHCCs, ii) maximum delivery capacity of each service in each PHCC, and iii) total budget regarding fixed, variable, and relocation costs. The proposed methodology was applied to a medium-size city. Results show that the non-attended necessity can be reduced by introducing capacity modifications in the existing network. Moreover, different solutions are obtained if budgetary restrictions or minimum attention volume constraints are included. This reveals how model-based decision support tools can help health decision-makers assessing primary health care network performance. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/201730 Elorza, Maria Eugenia; Moscoso, Nebel Silvana; Blanco, Anibal Manuel; Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks; Elsevier; Socio-Economic Planning Sciences; 84; 101454; 11-2022; 1-15 0038-0121 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/201730 |
identifier_str_mv |
Elorza, Maria Eugenia; Moscoso, Nebel Silvana; Blanco, Anibal Manuel; Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks; Elsevier; Socio-Economic Planning Sciences; 84; 101454; 11-2022; 1-15 0038-0121 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.seps.2022.101454 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0038012122002555 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269386477404160 |
score |
13.13397 |