Detection of process-related changes in plant patterns at extended spatial scales during early dryland desertification
- Autores
- Ares, Jorge Oscar; del Valle, Hector Francisco; Bisigato, Alejandro Jorge
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Arid and semiarid shrublands occupy extensive land areas over the world, are susceptible to desertification by anthropic use and can contribute to regional climate change. These prompt the interest to monitor and evaluate these lands adequately in order to detect early stages of degradation. Evaluation topics must refer to biologyrelevant characteristics of these systems, while simultaneously satisfying sampling consistency over extended landscape areas. We present an analysis of process-relevant parameters related to changes in the spatial arrangement of the plant canopy of shrublands inferred from high-resolution panchromatic aerial photos and Interferometric Synthetic Aperture Radar imagery. We obtained low-altitude images systematically located along several gradients of land-use intensity in a Patagonian Monte shrubland in Argentina. Images were digitized to spatial resolutions ranging from 0.09 to 0.72 m (pixel size) and the average values and an-isotropic characteristics of the plant canopy patterns were quantified by means of a Fourier metric. We used radar-derived imagery to overlay the panchromatic images on a digital elevation model in order to study the correspondence of potential runoff patterns and the spatial arrangement of plants. We related an-isotropic features of the plant canopy images to the prevailing wind regime. Observed trends were further interpreted on the basis of a spatial-explicit simulation model describing the dynamics of the main functional groups in the plant community. We conclude that early stages of anthropic-driven dryland degradation in the Patagonian Monte can be characterized by the incipient un-coupling of spatial vegetation patterns from those of runoff at a landscape scale, and a progressive coupling to the spatial pattern of the wind regime. The method and metrics we present can be used to quantify early desertification changes in other similar drylands at extended spatial scales.
Fil: Ares, Jorge Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina
Fil: del Valle, Hector Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina
Fil: Bisigato, Alejandro Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina - Materia
-
DESERTIFICATION
DRYLANDS
PATAGONIA
REMOTE SENSING
SPATIAL-EXPLICIT MODELS
SPATIAL VEGETATION PATTERNS
WIND EROSION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/103467
Ver los metadatos del registro completo
id |
CONICETDig_8d80520fdca181288b4ef2a66bd7ece6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/103467 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Detection of process-related changes in plant patterns at extended spatial scales during early dryland desertificationAres, Jorge Oscardel Valle, Hector FranciscoBisigato, Alejandro JorgeDESERTIFICATIONDRYLANDSPATAGONIAREMOTE SENSINGSPATIAL-EXPLICIT MODELSSPATIAL VEGETATION PATTERNSWIND EROSIONhttps://purl.org/becyt/ford/4.5https://purl.org/becyt/ford/4Arid and semiarid shrublands occupy extensive land areas over the world, are susceptible to desertification by anthropic use and can contribute to regional climate change. These prompt the interest to monitor and evaluate these lands adequately in order to detect early stages of degradation. Evaluation topics must refer to biologyrelevant characteristics of these systems, while simultaneously satisfying sampling consistency over extended landscape areas. We present an analysis of process-relevant parameters related to changes in the spatial arrangement of the plant canopy of shrublands inferred from high-resolution panchromatic aerial photos and Interferometric Synthetic Aperture Radar imagery. We obtained low-altitude images systematically located along several gradients of land-use intensity in a Patagonian Monte shrubland in Argentina. Images were digitized to spatial resolutions ranging from 0.09 to 0.72 m (pixel size) and the average values and an-isotropic characteristics of the plant canopy patterns were quantified by means of a Fourier metric. We used radar-derived imagery to overlay the panchromatic images on a digital elevation model in order to study the correspondence of potential runoff patterns and the spatial arrangement of plants. We related an-isotropic features of the plant canopy images to the prevailing wind regime. Observed trends were further interpreted on the basis of a spatial-explicit simulation model describing the dynamics of the main functional groups in the plant community. We conclude that early stages of anthropic-driven dryland degradation in the Patagonian Monte can be characterized by the incipient un-coupling of spatial vegetation patterns from those of runoff at a landscape scale, and a progressive coupling to the spatial pattern of the wind regime. The method and metrics we present can be used to quantify early desertification changes in other similar drylands at extended spatial scales.Fil: Ares, Jorge Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; ArgentinaFil: del Valle, Hector Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; ArgentinaFil: Bisigato, Alejandro Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; ArgentinaWiley Blackwell Publishing, Inc2003-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/103467Ares, Jorge Oscar; del Valle, Hector Francisco; Bisigato, Alejandro Jorge; Detection of process-related changes in plant patterns at extended spatial scales during early dryland desertification; Wiley Blackwell Publishing, Inc; Global Change Biology; 9; 11; 12-2003; 1643-16591354-1013CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1046/j.1365-2486.2003.00690.xinfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1046/j.1365-2486.2003.00690.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:22:28Zoai:ri.conicet.gov.ar:11336/103467instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:22:28.975CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Detection of process-related changes in plant patterns at extended spatial scales during early dryland desertification |
title |
Detection of process-related changes in plant patterns at extended spatial scales during early dryland desertification |
spellingShingle |
Detection of process-related changes in plant patterns at extended spatial scales during early dryland desertification Ares, Jorge Oscar DESERTIFICATION DRYLANDS PATAGONIA REMOTE SENSING SPATIAL-EXPLICIT MODELS SPATIAL VEGETATION PATTERNS WIND EROSION |
title_short |
Detection of process-related changes in plant patterns at extended spatial scales during early dryland desertification |
title_full |
Detection of process-related changes in plant patterns at extended spatial scales during early dryland desertification |
title_fullStr |
Detection of process-related changes in plant patterns at extended spatial scales during early dryland desertification |
title_full_unstemmed |
Detection of process-related changes in plant patterns at extended spatial scales during early dryland desertification |
title_sort |
Detection of process-related changes in plant patterns at extended spatial scales during early dryland desertification |
dc.creator.none.fl_str_mv |
Ares, Jorge Oscar del Valle, Hector Francisco Bisigato, Alejandro Jorge |
author |
Ares, Jorge Oscar |
author_facet |
Ares, Jorge Oscar del Valle, Hector Francisco Bisigato, Alejandro Jorge |
author_role |
author |
author2 |
del Valle, Hector Francisco Bisigato, Alejandro Jorge |
author2_role |
author author |
dc.subject.none.fl_str_mv |
DESERTIFICATION DRYLANDS PATAGONIA REMOTE SENSING SPATIAL-EXPLICIT MODELS SPATIAL VEGETATION PATTERNS WIND EROSION |
topic |
DESERTIFICATION DRYLANDS PATAGONIA REMOTE SENSING SPATIAL-EXPLICIT MODELS SPATIAL VEGETATION PATTERNS WIND EROSION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.5 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Arid and semiarid shrublands occupy extensive land areas over the world, are susceptible to desertification by anthropic use and can contribute to regional climate change. These prompt the interest to monitor and evaluate these lands adequately in order to detect early stages of degradation. Evaluation topics must refer to biologyrelevant characteristics of these systems, while simultaneously satisfying sampling consistency over extended landscape areas. We present an analysis of process-relevant parameters related to changes in the spatial arrangement of the plant canopy of shrublands inferred from high-resolution panchromatic aerial photos and Interferometric Synthetic Aperture Radar imagery. We obtained low-altitude images systematically located along several gradients of land-use intensity in a Patagonian Monte shrubland in Argentina. Images were digitized to spatial resolutions ranging from 0.09 to 0.72 m (pixel size) and the average values and an-isotropic characteristics of the plant canopy patterns were quantified by means of a Fourier metric. We used radar-derived imagery to overlay the panchromatic images on a digital elevation model in order to study the correspondence of potential runoff patterns and the spatial arrangement of plants. We related an-isotropic features of the plant canopy images to the prevailing wind regime. Observed trends were further interpreted on the basis of a spatial-explicit simulation model describing the dynamics of the main functional groups in the plant community. We conclude that early stages of anthropic-driven dryland degradation in the Patagonian Monte can be characterized by the incipient un-coupling of spatial vegetation patterns from those of runoff at a landscape scale, and a progressive coupling to the spatial pattern of the wind regime. The method and metrics we present can be used to quantify early desertification changes in other similar drylands at extended spatial scales. Fil: Ares, Jorge Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina Fil: del Valle, Hector Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina Fil: Bisigato, Alejandro Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina |
description |
Arid and semiarid shrublands occupy extensive land areas over the world, are susceptible to desertification by anthropic use and can contribute to regional climate change. These prompt the interest to monitor and evaluate these lands adequately in order to detect early stages of degradation. Evaluation topics must refer to biologyrelevant characteristics of these systems, while simultaneously satisfying sampling consistency over extended landscape areas. We present an analysis of process-relevant parameters related to changes in the spatial arrangement of the plant canopy of shrublands inferred from high-resolution panchromatic aerial photos and Interferometric Synthetic Aperture Radar imagery. We obtained low-altitude images systematically located along several gradients of land-use intensity in a Patagonian Monte shrubland in Argentina. Images were digitized to spatial resolutions ranging from 0.09 to 0.72 m (pixel size) and the average values and an-isotropic characteristics of the plant canopy patterns were quantified by means of a Fourier metric. We used radar-derived imagery to overlay the panchromatic images on a digital elevation model in order to study the correspondence of potential runoff patterns and the spatial arrangement of plants. We related an-isotropic features of the plant canopy images to the prevailing wind regime. Observed trends were further interpreted on the basis of a spatial-explicit simulation model describing the dynamics of the main functional groups in the plant community. We conclude that early stages of anthropic-driven dryland degradation in the Patagonian Monte can be characterized by the incipient un-coupling of spatial vegetation patterns from those of runoff at a landscape scale, and a progressive coupling to the spatial pattern of the wind regime. The method and metrics we present can be used to quantify early desertification changes in other similar drylands at extended spatial scales. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/103467 Ares, Jorge Oscar; del Valle, Hector Francisco; Bisigato, Alejandro Jorge; Detection of process-related changes in plant patterns at extended spatial scales during early dryland desertification; Wiley Blackwell Publishing, Inc; Global Change Biology; 9; 11; 12-2003; 1643-1659 1354-1013 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/103467 |
identifier_str_mv |
Ares, Jorge Oscar; del Valle, Hector Francisco; Bisigato, Alejandro Jorge; Detection of process-related changes in plant patterns at extended spatial scales during early dryland desertification; Wiley Blackwell Publishing, Inc; Global Change Biology; 9; 11; 12-2003; 1643-1659 1354-1013 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1046/j.1365-2486.2003.00690.x info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1046/j.1365-2486.2003.00690.x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614216716124160 |
score |
13.070432 |